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Resumo

“Winglets” sio apéndices com perfis de asa (acrofdlios) que se localizam na
parte superior da extremidade livre da asa. Estes apéndices estdo sendo utilizados
pela industria acrondutica com o intuito de aumentar a eficiéncia de superficies
aerodindmicas de sustentagiio (Asas). Este estudo pretende investigar, atilizando
Dinamica dos Fluidos Computacional, a influéncia qualitativa destes tipos de

apéndices nos coeficientes de sustentagdo ¢ de arrasto de uma asa.

Foram realizadas simulagdes numéricas utilizando o sofiware comercial F luent
6.1 da Fluent.Inc. para uma asa tridimensional com ¢ sem “winglets” para trés
condigdes de Angulo de ataque € modelos de escoamento incompressivel de Euler ¢
de Navier-Stokes com turbuléncia. As malhas computacionais foram geradas no

software Gambit 2.0.4 da Fluent.Inc..

Os resultados mais significativos foram a redugdio tanto do arrasto induzido
como © arrasto total, variando entre 17% e 2% de redugdo para as diferentes
condiges de simulagdio e a relativa invaridncia da sustentagio, se comparando a asa

sem e com “winglets” para as mesmas condigdes de escoamento.
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1. Introducio

Apéndices do tipo winglets estdo sendo utilizados pela indistria aerondutica

com o intuito de aumentar a eficiéncia de superficies aerodindmicas de sustentagéo.

O presente trabalho tem como objetivo investigar a influéncia qualitativa destes
apéndices nos coeficientes aerodindmicos de uma asa utilizando a Dindmica dos
Fluidos Computacional, conhecida como CFD, do inglés Coputational Fluid

Dynamics.

O trabalho pode ser dividido em duas partes, sendo a primeira geragio das
malhas computacionais (discretizagdo do dominio) ¢ a segunda simulagBes

numéricas para obtengiio ¢ comparagio dos resultados.

Os winglets sio apéndices com perfil aerodindmico localizados na parte
superior da extremidade livre das asas de uma aeronave. S#o utilizados para diminuir
a energia gasta na formagdo de vértices de ponta de asa, reduzindo o arrasto.
Diminuindo o arrasto, a propulsio da aeronave € facilitada ¢ seu consumo de
combustivel, reduzido. Outro beneficio ao desempenho das aeronaves causado pelos

winglets ¢ a redugio dos efeitos downwash e tridimensionalidade do escoamento.

Figura 1.1: Aeronave Embracr 190 com winglets.




A soma desses efeitos é muito importante para o desempenho principalmente
das aeronaves comerciais, que percorrem altas disténcias e possuem um peso muito

elevado se comparado com jatos e avides militares.

A opeo pela utilizagdo de CFD para a implementagdo deste estudo, ao invés
de métodos experimentais (Ensaios em Tanel de Vento), se deu por causa da maior

atratividade da primeira em relagdo a segunda opgéo.

A dindmica dos fluidos computacional (CFD — do inglés Computational Fluids
Dynamics) ¢ normalmente definida como o conjunto de topicos que englobam a
solugdio numérica, através de métodos computacionais, das equagOes governantes que
descrevem o escoamento de fluidos e transferéncia de calor, ou seja, as equagoes da
dindmica do movimento (Navier-Stokes ou Euler, por exemplo), cquagdes de
continuidade e quaisquer outras equagdes adicionais de conservagio, tais como de

energia ou concentragdo de espécies quimicas.

Juntamente com as abordagens experimentais e analiticas, constitui o conjunto
de técnicas utilizadas para a resolugio de problemas em mecénica dos fluidos e

transferéncia de calor.

Como uma ciéncia em desenvolvimento, CFD tem recebido uma enorme
aten¢do da comunidade cientifica e tecnologica internacional desde o advento do
computador digital. No fim dos anos 60, os supercomputadores digitais comegaram a
apresentar taxas de processamento rdpidas o bastanie para resolver as equagdes de
Navier-Stokes para alguns casos simples, como o escoamento de velocidades baixas,
bidimensional ao redor de um obsticulo. Antes disso, tineis de vento eram
essencialmente a Gnica maneira de testar a aerodinfmica de novos projetos. De 14
para cé, o custo computacional de um procedimento genérico tem se reduzido de um
fator aproximadamente igual a 10 a cada 8 anos. Por isso, nos ultimos anos CFD
deixou de ser apenas um objeto de pesquisa nos meios acad®micos € se tornou uma
ferramenta bastante poderosa e importanie em quase todo tipo de projeto que envolve

mecénica dos fluidos, indo desde engenharia aeroespacial até previsdo do tempo.




Contudo, tomando como parimetro o projeto de aeronaves, por exemplo, até
mesmo hoje as limitagBes dos mais poderosos supercomputadores ainda fazem com
que seja necessaria a utilizagdo de tineis de vento para a verificagfio da aerodindmica

de um nevo avido.

No entanto, o progresso continuo que a tecnologia computacional de software €
hardware vem sofrendo tem proporcionado a CFD uma maior fatia do processo de
projeto, principalmente nos estagios iniciais, quando os engenheiros estabelecem as

dimensdes principais e outros pardmetros basicos da aeronave.

Esta fase envolve muitas decisdes tomadas por temtativa e erro, por isso
experimentos em ténel de vento tornam-se bastante caros, pois requerem a
constru¢do de um novo modelo para cada teste realizado. Devido ao recente
crescimento de CFD, um tipico ciclo de projeto hoje envolve de dois a quatro testes
de modelos de asa em tanel de vento, ao invés de dez a quinze, que era o padrio

antigamente.

Sio trés os principais atrativos do uso de CFD quando comparados ao
procedimento experimental. Primeiramente, a possibilidade de modelar fendmenos
da mecanica dos fluidos cuja reprodugdo experimental seja proibitiva ou impossivel,
como por exemplo sistemas climaticos ou aeronaves supersbnicas. Esta vantagem se
aplica ndo somente ao fendmeno fisico como um todo, mas também a certos detalhes

do experimento, que podem ser isolados durante a modelagem do fendmeno.

Um segundo aspecto € que a solugdo computacional do problema fornece a
solugio completa para todas as varidveis, enquanto que num experimento a

quantidade de varidveis medidas e os pontos de medigéo s&o bastante restritos.

Um altimo atrativo se resume & capacidade de investigar sistemas fluidos mais
rapidamente € com um custo menor em relagio a0 mesmo tipo de andlise feita
procedendo-se experimentalmente.Como conseqiiéncia disso, hi uma demanda
consideravel por especialistas no assunto, para aplicar e desenvolver métodos de

CFD em empresas de engenharia ¢ instituigSes de pesquisa.



J4 os principais problemas residem na modelagem do fendémeno fisico, que
nunca representard a realidade de maneira totalmente fiel, e na implantagfio do
método numérico, que pode fazer com que a solugfio divirja ou convirja para um
valor errado. Assim, a grande maioria dos esforgos no desenvolvimento de CFD hoje
em dia concentra-se nesses dois 16picos. Pode-se afirmar que nos filtimos anos

evidenciou-se um estrondoso desenvolvimento nesses campos.
Os softwares de CFD utilizados neste trabalho séo:
- Gambit 2.0.4, gerador de malhas computacionais.
- Fluent 6.1, realiza as simulagbes numéricas (solver).

A motivagiio para a realizagdo deste trabalho € a possibilidade de se estudar um
assunto muito visado e ainda carente de estudos mais aprofundados pela industria
aerondutica, utilizando CFD, uma ciéncia em grande desenvolvimento que tem
recebido uma enorme atenciio da comunidade cientifica e tecnoldgica internacional

desde o advento do computador digital.



2. Geracgio de Malhas Nao-Estruturadas

S3o vérios os métodos numéricos utilizados para a resolugdo de problemas em
CFD. Entre eles estdo o método das diferengas finitas, método de elementos finitos,
método espectral e método dos volumes finitos. Este uliimo ¢€ utilizado nas
simulagdes deste trabalho e tersd uma descricdo detalhada adiante. Todos estes
métodos tém carater “euleriano”, isto &, a andlise € focada num espago fixo em
relacio ao sistema de coordenadas adotado, € ndo na particula. Desse modo, ¢
necessario que se discretize 0 dominio do problema a fim de aplicarmos 0 método de
resolucdo. £ disso que consiste a geragdo de malhas: é a discretizagio do dominio em
varios elementos de forma geral pré-determinada, com a finalidade de estabelecer a
posig8o dos pontos (n6s) para os quais serdo calculadas as solugBes pretendidas. A
geragdo de malhas, a determinagdo das condigdes de contorno ¢ condigBes iniciais ¢
o ajuste dos pardmetros de solugdo constituem o que se costuma chamar de pré-

processamento do problema.

A fase de geragdo de malhas é muito importante na medida em que a geragdo
de uma matha valida num dominio com uma geometria complexa ndo ¢ uma
operagdo trivial e pode ter um custo bastante grande em termos de tempo de
processamento. Além do mais, a criagio de uma malha coerenie com s
caracteristicas fisicas do problema considerado ¢ crucial, porque a qualidade da

solug@o computada esta fortemente relacionada com a qualidade da malha.

2.1. Nogbes gerais relativas a malhas

Uma malha de um dominio, €2, € definida por um conjunto, T}, que consiste de
um nomero finito de segmentos em uma dimensdo, segmentos, tridngulos ¢
quadrilsteros em duas dimensdes ¢ OS elementos anteriores mais tetraedros,
pentaedros € hexaedros em trés dimensdes. Os elementos, K, de tal malha devem
satisfazer a um certo nimero de propriedades que serao introduzidas a seguir. A

primeira diz respeito a conformidade, de acordo com a definigdo:



Definigio: T, é uma malha conforme de € se as seguintes condigdes sd0

satisfeitas:

. Q=Ug. K

2. Todos os elementos de Th tém interior de drea (no caso bidimensional) ou
volume (no caso tridimensional) ndo nulos

3. A intersecdo de dois elementos quaisquer de Tj se enquadra em um, €

apenas um, dos seguintes casos:

. conjunto vazio

. um ponto comum aos dois elementos
. uma aresta comum aos dois elementos
. uma face comum aos dois elementos

Se T, é uma malha conforme, entdo dizemos que ela representa Q de maneira
conforme quanto a aspectos geométricos. Na pratica, T, € uma particionamento de €,
td0 preciso quanto possivel. Quando €2 ndo € um dominio poligonal {ou poliedral), Tx

serd apenas uma discretizagdo aproximada do dominio.

Os elementos constituintes de uma malha devem geralmente satisfazer algumas

propriedades especificas:

Propriedades geoméltricas:

— A variagio dimensional entre dois elementos adjacentes tem que ser
progressiva ¢ descontinuidades de elementos para elementos ndo podem ser muito

abruptas.

_ A densidade de elementos em regides de gradientes elevados de alguma

grandeza envolvida no problema deve ser alta.

—~  Quando os elementos sdo do tipo triangular, deve-se evitar a presenca de

angulos obtusos nos elementos.

_  Os elementos devem se adequar as caracteristicas anisétropicas do

problema.



Propriedades de natureza fisica:

Essas propriedades estdo fortemente ligadas aos aspectos fisicos do problema
em consideragdo. A configuragio geral e individual dos elementos deve ser definida

de acordo com o comportamento do problema.

Existem numerosos algoritmos para a construgdo de malhas bidimensionais ¢
tridimensionais. A escolha do método esté fortemente ligada a geomeiria do dominio
considerado. As mathas geradas podem ser agrupadas cm duas classes principais:

malhas estruturadas e malhas ndo-estruturadas.

Uma malha é chamada de estruturada se sua conectividade ¢ do tipo de
diferengas finitas. Uma malha é chamada de nio-esiruturada se sua conectividade €
de qualquer outro tipo. Por conectividade de uma malha entendemos a defini¢do da
conexdo entre seus vértices, em outras palavras, a conexdo entre 0s nds globais de

uma malha e os nés locais de cada elemento da malha.

Elucidando melhor os conceitos: para uma malha estruturada, a conectividade
entre os nos & do tipo (i, j, k), isto &, assumindo que indices de um certo né sejam (i,
j, k), seu vizinho esquerdo terd os indices ((i-1), j, k) € seu vizinho direito ter os
indices ((i+1), j, k). Este tipo de malha é mais apropriado para geometrias simples e
simétricas, tais como configuragdes quadrilaterais e hexaedrais. Para geometrias mais
complexas, ¢ necessario m tratamento especial para que este tipo de estruturagiao seia
concebido. O presente trabalho lida com simulagSes que utilizam malhas néo
estruturadas, que por sua vez apresentam menos restrigdes geométricas, mas tem um

custo computacional maior.

Podemos ainda dividir os diferentes algoritmos de geragio de malha em sete

classes:

Métodos manuais ou semi-gutomdticos: adequados para geometrias
relativamente simples. Estdo nessa classe os métodos enumerativos, nos quais os
pontos, arestas, faces e elementos que compde a matha sio dados explicitamente; €
métodos apropriados para situagbes geométricas  particulares, como formas
cilindricas e hexaedrais, os quais usam propriedades especificas da geometria

explicitamente e a conectividade € conhecida “a priori”.



Métodos que utilizam mapeamento: constroem a malha a partir do
mapeamento, através de uma transformagéo conforme de um dominio, de uma matha

de geometria simples.

Métodos baseados na solugdo de um sistema de equagdes diferenciais a
derivadas parciais: essa abordagem se assemelha & segunda, mas aqui a fungdo de
mapeamento ndo é dada a principio, mas & computada a partir da resolugdo de
equagdes diferenciais a derivadas parciais, de forma a satisfazer certas propriedades

de interesse, tais como densidade de elementos e ortogonalidade.

Métodos baseados na deformacdo e modificagdo local de uma malha: este
método aplica-se principalmente a malhas de facil obtengdo, do tipo quadtree, em
casos bidimensionais, ou ocfree, para casos tridimensionais. Nestes casos 0 dominio
estd encerrado num quadrilstero ou num paralelepipedo que ¢ divido em
subconjuntos na forma de caixas. Esses subconjuntos sdo construidos pela
decomposigio baseada em uma arvore quaterndria (para dimensdo 2) ou arvore octal

(dimensdo 3). A rede resultante € entdo utilizada para criar a malha desejada.

Métodos que derivam a malha final, elemento por elemento, dos dados do
contorno: basicamente existem duas abordagens: métodos de frente progressiva
(“advancing front methods™) e algoritmos baseados na construgiio de Voronoi-
Delaunay. Estes métodos criam nés internos e elementos, comegando da fronteira do
dominio. Esta fronteira pode ser dada de maneira global (por exemplo, definidos de
forma analitica) ou de maneira discreta (como uma lista de arestas de faces
triangulares). Esta classe de métodos € de particular interesse neste trabalho, pois ¢ a

que o software de geragdo de malhas utilizado(Gambit 2.0.4) emprega.

Métodos que utilizam a composi¢do de malhas de subconjuntos baseados na
modificaciio geométrica ou topologica dessas malhas: neste caso, as malhas dos
subconjunios podem ser obtidas por qualquer um dos métodos anteriores. O
problema é entio dividlo em um conjunto de “sub-problemas” de menor
complexidade, que sdo entdo resolvidos por uma ou mais classes das anteriormente
citadas e o resultado final é entdio obtido por transformacdes e a adigdo dos

resuitados parciais.
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Assim sendo, percebe-se que as principais diferengas entre os algoritmos de
geracio de malhas estio na generalidade do método, principalmente com relagdo a
geometria, e a variedade, quantidade e forma dos dados que tem que ser fornecida ao

algoritmo.

O estabelecimento da nogio de malha de tal forma que esta seja conveniente
em termos da computagio futura precede a escolha do método geral de concepeéo da
malha. Escolhido o métedo, existem diferentes maneiras pelas quais ele pode ser

implementado.

2.2. Descrigdo Geral

Uma malha tem que ser descrita de acordo com a sua aplicagdo. No caso de
simulacdes de escoamentos externos, que € O que OCOITe neste trabalho, s#o
necessérias as definicdes de objetos solidos e da zona fluida que os circunda. Nesta
defini¢do deverdio estar contidas todas as informages necessarias considerando os
varios passos na computagdo. Estas informagdes incluem geometria, condi¢bes de

contorno. Elas podem ser agrupadas em trés tipos:
s Informaglo geométrica:

Aqui se incluem a descrigiio da malha, ou seja, como seus elementos cobrem o
dominio, e uma espécie de histérico que contenha toda a informagdo previamente
utilizada na construgdio dos elementos. Também tem que estar descrito o tipo de
elemento (segmento, tridngulo, quadrilatero, tetraedro, pentaedro, hexaedro ou

outro).

A maneira prética da descri¢go da malha se constitui na listagem dos vértices
dos elementos, a conectividade, as coordenadas dos vértices ¢ a topologia, que ¢ a

descrigdo das arestas e faces de um elemento pelos seus vértices.
e Informagbes necessarias ao processamento:

Encontram-se aqui agrupados os dados para computagio das matrizes, solugdo
dos sistemas e visualizacio dos resultados. Estas informag@es variam de acordo com
o algoritmo numérico utilizado para a resolugdo do problema. Exemplos sdo o

namero ¢ a lista dos nds dos elementos.
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E preciso frisar que os nds € 0s vértices de um elemento podem coincidir ou
ndo. Podem existir nos intermediarios localizados nas arestas, faces ou interior do
elemento. Convenciona-se entdo uma ordem de numeragdo, de modo a simplificar a
representagio dos elementos. A seguir sdo dados quairo exemplos de elementos

triangulares, com 0s respectivos n6s numerados e indicados:

(")

1 4

Figura 2.1; Diferentes numeragdes dos nos de um elemento triangular.
e Informagdes fisicas:

Nesta classificacdo estdo as condigdes iniciais ¢ de contorno e caracterizago
fisica dos elementos (material e propriedades, por exemplo).
2.3. Metodologia Geral para Criagio de Malhas

A concepgdio de uma malha pode ser decomposta em trés passos:

e  Analise do problema;

e  Definigio formal do processo de geragio da malha;

e A construcio da malha propriamente dita.
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O primeiro passo consiste na anglise da geometria do dominio ¢ do problema
fisico a ser resolvido. Essa andlise deve ser feita segundo uma metodologia fop-
down, ou seja, na decomposi¢do de um problema complexo numa série de problemas

mais simples.

A construgio formal da malha, que constitui o segundo passo, leva em conta 0s
resultados da andlise efetuada no primeiro passo e ¢ baseada numa construgio
bottom-up, que ¢ a definicdo de objetos simples tornando a solugio do problema

completo possivel através da soma das solugdes dos objetos.

Por ultimo, a construgio da malha propriamente dita ¢ feita através do uso de
um algoritmo apropriado de geragdo de malhas ¢ consiste de duas fases: a definigdo

do conjunto de dados relevantes ¢ a geragiio real da malha.

24. Métodos de Frente Progressiva (Advancing Front Methods)

Aqui sera feita uma introdugdo geral ao método empregado pelo software
utilizado para gerar as mathas das simulagdes deste trabalho (Gambit 2.0.4). Esta
classe de geradores de malhas foi desenvolvida entre as décadas de 70 e 80 ¢ foi a
primeira solugdo automatica para a geragdo de malhas para dominios de geometrias
arbitrarias. Basicamente, os algoritmos constroem a malha do dominio a partir da
fronteira do mesmo. Os elementos utilizados sdo tridngulos no caso bidimensional e
tetraedros no caso tridimensional. Os dados demandados sdio as fronteiras do
dominio ou, mais precisamente, sua discretizagiio poligonal (para dimensdo 2)
descritos por uma lista de segmentos, ou sua discretizagio poliedral (para dimensdo

3) descritos por uma lista de faces friangulares.

O processo ¢ iterativo: uma frente, inicializada por um conjunto de itens da
fronteira dada, € analisada a fim de estabelecer uma zona de partida, a partir da qual
um ou mais elementos internos sdo criados; a frente é entdo atualizada e o processo
de criagio de elementos ¢ repetido se a frente ndo for um conjunto vazio. O
algoritmo pode ser sumariado da seguinte forma (veja também o esquema mostrado

na Figura 2.2):

e [Inicializagio da frente;

13



e  Analise da frente:
- Determinagdo da zona de partida;
- Anilise da regido:
] Criagéo dos pontos internos ¢ dos elementos internos;
. Atualizaggo da frente.

e  Se a frente ndo for um conjunto vazio, ir para “Andlise da frente”.

" Comtomodade |

Criacio de clemenios

|

Figura 2.2: Esquema geral do método de frente progressiva,

A andlise da frente e a criagdo dos clementos podem ser feitas de varias
formas. Aqui serdo descritas uma forma para o caso bidimensional e uma para o caso
tridimensional. Logo apés sdo introduzidas algumas extensdes que servem para
controlar a criagdo dos pontos internos € dos elementos, de tal maneira que a malha
resultante tenha algumas caracteristicas particulares, como elementos isotropicos,

elementos anisotropicos, etc.
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24.1. Métodos de frente progressiva em duas dimensdes

Como ja foi exposto, este tipo de algoritmo constréi a malha do dominio Q
com tridngulos que partem do seu contorno. Na prética, uma aproximagdo poligonal
do contorno € usada em termos de uma lista dos seus elementos constitutivos. O
interior do dominio, ou seja, a zona a ser discretizada, esta bem definida por causa da
orientagdo do contorno servindo como dado de entrada. A frente inicial F' ¢ definida

como o conjunto de segmentos da fronteira C descrevendo o dominio Q2.

Dada F, pode-se detalhar a maneira pela qual os tridngulos sdo criados.
Enquanto o processo de criagdo dos triangulos internos progride, a fronteira C ¢ a
frente F sio atualizadas. Considerando F o atual estado da frente, entdio sua andlise €

baseada no exame das propriedades geométricas dos seus elementos constituintes.
Chamando de o o dngulo formado por dois scgmentos consecutivos da frente F,

entdo trés situagdes ou padrdes sdo identificados:

¥ N a . .
1. a< 3 os dois segmentos com &ngulo o 530 mantidos e tornam-se dois

fados do tridngulo criado (Figura 2.3);

Figura 2.3: Padrio 1.
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7 27z ] - . .
2. -Z—Sa < o dos dois segmentos com dngulo a, um ponto interno e dois

triangulos sdo gerados(Figura 2.4);

|

sl

Y B S5c

54 52 S4

4
S3

Figura 2.4: Padréio 2.

2 : " .
3. —;E—<a, um segmento ¢ mantido, um triangulo ¢ criado com este

segmento sendo um dos fados e um ponto interno (Figura 2.5);

Figura 2.5: Padréio 3.

As posi¢des dos pontos internos criados sdo definidas de forma que sejam
otimas, significando que os elementos que t8m esses pontos como vértices sejam 0S
mais regulares possiveis. No caso do padrfio 2, o vértice € gerado na linha bissetriz
do dngulo o a uma distincia computada a partir dos respectivos comprimentos das
arestas da zona de partida: a localizagio deste ponto interno S € calculada pela

férmula:
1
dss, = 3 (stzs; +2dgg, +dgs, +dsgs, ) 2.1

No caso dos 4ngulos P e y (Figura 2.3) terem seus valores entre 7/5 e 2n-n/5
radianos (o valor /5 ¢ empirico). Para outros casos, o padrio 1 € utilizado. No caso
do padrio 3, um triangulo o mais préximo de um eqiiilatero possivel ¢ formado

usando o segmento mais curto da zona de partida.
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Na criagio de cada ponto, € necessario verificar se o ponto estd dentro do
dominio ainda ndo coberto pelos elementos ja construidos. Isto quer dizer cada ponto
criado tem que estar dentro do dominio considerado e fora de qualquer elemento
existente. Essa verificaglio, crucial para este tipo de método, bascia-se no
conhecimento exato da vizinhanga da zona que estd sendo criada. No caso
bidimensional, um ponto serd interno se a intersec¢do de todos as arestas que dele
partem com qualquer aresta da frente é um conjunto vazio. No caso de dominios com
um ou mais loops internos (“buracos”), ¢ necessario considerar ainda a condigdo de
que penhum tridngulo formado com o ponto em questio contenha um ponto, em

qualquer segmento, do contorno de qualquer loop interno presente.

Uma nova frente F é formada pela supressdo dos segmentos que pertengam aos
tridngulos criados e A antiga frente; e pela adigdo dos novos segmentos dos tridngulos
criados, que ndo sejam comuns a dois elementos. O estado atualizado de F € entdo
processado da mesma forma. A Figura 2.6 mostra vérios estados da frente em
evolugio correspondendo ao dominio mostrado na Figura 2.7. Uma vez que F seja

um conjunto vazio, a malha final esté constituida.

din L

Figura 2.6: Estados da frente progressiva.
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Figura 2.7: Matha final.

No caso de dominios fortemente ndo convexos, ¢ método pode ndo convergir.
Além disso, uma variagio muito aguda na distribui¢io dos pontos na fronteira pode
produzir um resultado negativo similar. Para sanar este problema, considera-se
apenas subconjuntos primarios adequados, ou um método diferente tem que Se€r
usado. De fato, este resultado negativo ¢ uma conseqiiéncia da dificuldade em provar
a validade do método teoricamente, mas uma implementagio mais astuta pode

superar este problema.

A triangulagdo obtida estd claramente relacionada ao nimero e localizagdo
relativa dos pontos que discretizam a fronteira. Assim, especificando os pontos da
fronteira adequadamente, & possivel obter uma densidade variavel de elementos em

certas regides da malha.

A malha final pode ser polida a fim de obter trifingulos de melhor qualidade.
Este processo corrige a posigdo dos pontos criados usando informagdes locais

globalmente. O resultado ¢ mostrado na Figura 2.8.

PO

A

l‘gp-‘
X
A

Y,
5
N
B
20

)
3
Y
AY)

[
53
SEA
h"é" A,
ISR
AT,

&
¥

Fp‘)"

A
)
'~

Figura 2.8: Malha antes e depois de ser polida.
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Existem numerosas variagSes do método de frente progressiva. Em particular, a

zona de partida pode ser escothida como:

e Uma parte do contorno tal que seus elementos constitutivos satisfagam

certas condiges (a Figura 2.5 ilustra o resultado de um algoritmo pertencente a esse
grupo);

e A fronteira inteira constitui a frente, € seus elementos constitutivos

participam da criagio de elementos numa ordem pré-definida.

A primeira abordagem se aplica especialmente a zomnas particulares, por
exemplo, aquelas que contém angulos pequenos. A segunda abordagem produz uma
inflagio da frente inicial (Figura 2.9) ou a propagagdo de uma finha inicial (Figura
2.10).

| |

Figura 2.10: Frente progredindo pelo avango de uma linha.

Este método pode também ser aplicado para a criagdo de quadrilateros.
Baseado no mesmo principio, o algoritmo intenta em criar quadrilateros com a forma
a mais regular possivel. Este processo utiliza tridngulos em locais impossiveis de

serem cobertos por um quadrilatero ou uma combinagdo deles.
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2.4.2. Meétodos de frente progressiva em trés dimensdes

A aplicagdo de técnicas de frente progressiva em trés dimensdes ¢ obviamente
mais delicada e os problemas inerentes a €sse tipo de abordagem s3o mais dificeis de
serem solucionados. No caso tridimensional, o dominio é discretizado em elementos
tetraédricos, construidos a partir dos dados da fronteira. Na pratica, uma
aproximagdio poliedral do contorno ¢ utilizada e se constitui de uma lista de faces
triangulares. O algoritmo & baseado no mesmo tipo de esquema utilizado para o caso
bidimensional (Figura 2.10). O processo & iterativo: a partir de um dado contorno Ce
uma frente a ele associada F, as propriedades das faces de F, em termos de tamanho
¢ angulagdo, e da sua vizinhanca, sio analisadas a fim de selecionar uma zona de

partida.

De acordo com o caso considerado, um elemenio é criado com as faces
selecionadas ou um ponto interno € gerado de forma a permitir a criagdo de
elementos através da ligagdo dele com as faces selecionadas através de arestas
simples. As condigdes referentes a criagio dessas novas arestas sd0: por um lados, as
arestas que coniém o ponto interno criado nio podem interceptar uma face de
qualquer elemento da frente e, por outro lado, as faces que contém o ponto interno
criado ndo podem ser interceptadas por qualquer aresta da frente. No caso de
dominios com um ou mais loops internos, & necessario considerar ainda a condigdo
de que nenhum elemento formado com o ponto em questdo contenba um ponto, em

qualquer segmento, do contorno de qualquer loop interno presente.

O novo estado da frente F~ ¢ formado pela remogao das faces dos tetraedros
criados que pertengam 2 frente antiga F, ¢ pela adigdo das faces criadas para compor
os novos elementos, caso essas faces ndo sejam comuns a dois ejementos. F’ ¢
processada do mesmo jeito, € a malha final & obtida a partir do momento que a frente

seja um conjunto Vazio.

A eficiéncia e a confiabilidade do método dependem da forma como 0 espago €
controlado. Na prética, € preciso que s¢ acesse O contexto relativo de qualquer
segmento da frente rapidamente, ou seja, que se determine a vizinhanga de qualquer
tridngulo da malha em progressao. Este requisito é particularmente importante no

caso tridimensional em termos de eficiéncia do algoritmo.
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3. Fundamentos de Aerodinidimica

A segunda parte desse trabalho refere-se a simulages tridimensionais de
diferentes configuragdes de superficies de sustentagdo. Por isso, neste capitulo, sdo
feitas consideracBes tedricas e tecnolégicas sobre aerodindmica e sua utilizag#o.
Essas consideragBes abrangem definigdes de termos técnicos e grandezas fisicas,
introdugdo de modelos de andlise de dados e aplicagdo dos conceitos de
aerodindmica a asas finitas. Por ventura dessa @ltima, para um completo
entendimento desse capitulo, é necessario que o leitor esteja familiarizado com os
conceitos de acrodindmica e mecdnica dos fluidos bésica. Caso contrario,

recomenda-se que se recorra s referéncias [1],]2] ¢ [3].

3.1. Equacdes da Dinimica dos Fluidos Incompressiveis

As equagbes da dinimica dos fluidos sdo obtidas através da aplicagdo dos
principios basicos da Mecanica, como conservagdo da quantidade de movimento ¢
conservagio de massa, a uma particula fluida infinitesimal de uma massa fluida

incompressivel.

Para uma particula fluida sob a agdo das forgas de campo (gravidade, na
diregdo z) ¢ das forgas de contato das outras particulas obtém-se as seguintes

equacdes que descrevem o comportamento dessa particula:

a. Equagio de Movimento (Quantidade de Movimento):

y. %+(ﬁ-v)u]=ag;" +6;y +aa:"z ;

p %+(E-V)v) = aar: ¥ 6;” ¥ a;yz 3.1)
g %Jr(ii-v)w]: a;z +6;, +agzzz P
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Para um fluido newtoniano, o campo de tensdes ¢ dado por:

Gy =—p+2 ~6—u T, = ?E—+-6l
= P ﬂax = H o
o -—p+2‘.uiai T —y{2+@J
W oy »o\e o (3.2)
o,,==p+2 w Ty, = QW__+§1{
z="F ﬂaz = ox Oz

Substituindo as equagdes (3.2) nas equagdes de movimento (3.1), teremos as

equagdes de movimento (dinimicas) para fluidos newtonianos incompressiveis:
{ Ou dp 8*u 8’u d’u
—+u-Vu|j=—-"-+ + +
Ao ( )u} ax ox dy* oz’
2 2 2
P @+(ﬁ-v)v]=—§£+p(a f+a‘:+a‘;J (3.3)
\ Ot Oy ox* oy" oz
(ow . op ’w o*w d’w
—+tu-Vw|=—-+ + + -
- ot ( )WJ Oz # ot oyt ozt &

onde (u,v,w) é o campo de velocidade, p ¢ a distribuigio de pressdo, p € a

massa especifica do fluido, g ¢ a aceleragéo da gravidade e p é a viscosidade do
fluido.

O modelo de fluido newtoniano descreve apropriadamente o comportamento

tanto da agua quanto do ar em condigSes usuais.

b. Equagcdo de Conservagfio da massa:
A equagio da continuidade (conservagdo da massa) para uma particula fluida
qualquer ¢ dada pela expresséo:

6_p+6(pu)+6(pv)+6(pw)=0 (34)
ot 0x dy 0z

Para um fluido incompressivel (massa especifica invariante no tempo € no

espaco) a equagio da continuidade fica:

du Ov  oOw (3.5)
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c. Eguactes de Navier-Stokes para Fluido Incompressivel:

O sistema de formado pelas equagtes (3.3) e (3.5), que governa o escoamento
de um fluido newtoniano incompressivel, é denominado Equacdes de Navier-Stokes.

Na forma vetorial, o sistema ¢ dado por:

ou = . =
=+ pla Vi =-Vp+uVii- pgk
py+ PV =—Vp+ Vi~ pg 36)
V-u=0
Existem assim quatro equagdes escalares com quatro incognitas: as trés
componenies de velocidade ¢ a pressio. A dificuldade toda do problema do
escoamento de um fluido incompressivel reside na agdio de duas parcelas de (3.6): a

parcela (ﬁ . V)z'i da aceleragdo convectiva, que ¢ responsavel pela néo-linearidade do

problema, ¢ a parcela viscosa pV’#, responsivel pela geragio de vorticidade na

superficie dos corpos expostos ao escoamento.

3.2. For¢a de Arrasto e Vorticidade do Escoamento

Quando um corpo translada em um meio fluido com velocidade constante
(regime permanente), o fluido oferece uma resisténcia ao avango que s6 pode ser
vencida se aplicarmos ao corpo uma forga de mesma magnitude dessa forca de
resisténcia chamada forga de arrasto. A tarefa fundamental no projeto de
"embarca¢Bes" que se¢ deslocam nesse meio, como navios, avides, automoveis,
submarinos, etc, é minimizar a forga de arrasto e portanto a demanda sobre o sistema
propulsivo que deve ser instalado na "embarcagio”. A forca de arrasto(resisténcia ao
avango) pode ter vérias origens, mas sempre possui uma componente muito
importante relacionada ao atrito interno, & dissipagdo de energia relacionada a

viscosidade do fluido.

F

meio fluido
dlVAY.
@smidn >

Figura 3.1: Corpo s6lido de superficie S, se desiccando em meio fluido.
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As equagdes de movimento em duas dimensdes sdo dadas por:

ou [ ou 6uJ op (qu aqu
p—tplu—+v—|=—F+pu +
e

ot ) ox ox? 5
» » (3.7)
ov v ov op o*v v
pP—+plu—tv_—|=——+pyu ——+——
ot o oy dy ox® oy
A equago de conservagdo de massa pode ser escrita na forma:
17} ov
s BN (3.8)
ox dy
E o rotacional do campo de velocidades (vorticidade) pode ser expresso como:
rot(i) = a)zlz
ov 0 3.9
8 = (3.9)
& oy

A forga de arrasto sobre o corpo em movimento no meio fluido pode ser

calculada através da conservagdo da energia:

~ - d[1 2
F-U=—|—p|a*dS |+ u {{rota)) 4S 3.10
{4 fas |+ o) 610
A expresséo (3.10) afirma que do total F-U da poténcia fornecida ao corpo
para se movimentar com velocidade constante, parte € gasta para aumentar a energia
cinética do fluido e outra parte é dissipada pela viscosidade (geragéo de voértices).

Em um escoamento estaciondrio (regime permanente) a energia cinética permanece

invariante no tempo ¢ assim:

D=Ui [(rotG)) as 3.11)

0 8

Pode-se perceber que a parcela da forga F na diregio da velocidade U € a

forga de arrasto D.
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O coeficiente de arrasto Cp € 0 adimensional definido pela expressao:

D 1 2 2
C.(Re)= = G ds 3.12
»(Re) 1/2pU 2 Re U, S!(m @) (3.12)
Onde:
Re = 2! (3.13)

H

& o numero de Reynolds e I o comprimento caracteristico do corpo € b sua
espessura (envergadura).

Através das equacBes acima fica evidente a relagdo entre o arrasto (D ou Cp) ©
a vorticidade (rot(ii)= @,k ), portanto, quanto maior for a intensidade dos vortices

formados, mator serd o arrasto sobre o corpo em meio ao escoamento. Nos projetos
de engenharia, a forma dos corpos projetados sdo tais que o rotacional do campo de

velocidades do escoamento ao redor destes corpos é praticamente nulo, ou seja:

Bom projeto 2 @ = rot{i)=0 (vorticidade nula) - Minimizar a for¢a de
arrasto e a poténcia do sistema propulsivo.

Para o estudo do escoamento ao redor de superficies de sustentagfo (asas) essa
hipotese de escoamento irrotacional é muito boa, pois o formato de asas (forma

aerodinamica) ¢ tal que, os vortices (redemoinhos) gerados pelo escoamento sdo

pouco intensos.

3.3. Forca de Sustentacio e Circulacao

A forga F aplicada externamente a0 corpo deve ser igual e de sinal contrério a

forca que o fluido aplica no corpo: essa ¢ a condigio para que ele translade-se com
uma velocidade constante U pois s6 assim a resultante das forgas, ¢ portanto a

aceleragdo, pode ser nula. Quando a forca F ndo é colinear com U, existe uma
componente ortogonal L, além da forca de arrasto paralela a velocidade, designada

forga de sustentacdo.
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Figura 3.2: Componentes de arrasto D e de sustentagfio L da forga F sobre o corpo de superficie So.

A forca de sustentagdo € dada pela expressdo:

L= pU,T, (3.14)

Onde:

T, = fii-dl = frot(ii)- as, = Jo.ds, (3.15)
S So

é a circulagiio no contorno do corpo.

Define-se entio o coeficiente de sustentagdo de maneira analoga ao cocficiente

de arrasto:

L
L= 3
1/2pU1h

(3.16)

Pela equagdo (3.14) percebe-se que a circulagiio € nula para um escoamento

simétrico (I, =0). Para que haja sustentagéo, ¢ necessério que se quebre a simetria

do problema e isso pode ser conseguido de duas formas: introduzindo ou uma

assimetria no corpo ou movimentando o corpo com um pequeno dngulo de ataque.

3.4. Fluido Ideal: Equagio de Bernoulli

A viscosidade do fluido desempenha um papel na dindmica dos escoamentos
de tal forma que, sua importancia depende da regido do escoamento onde a estamos
considerando: ela é essencial na superficie do corpo, onde os vortices sdo gerados
justamente porque o atrito interno impede que a particula fluida deslize sobre a
superficie; ela € praticamente irrelevante no interior do fluido, onde a influéncia das

forgas viscosas € dominada pela presenga das forgas de inércia.
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A geragdo de vorticidade € resultante da interagdo entre o corpo s6lido inserido
no escoamento € o fluido. Tanto a forga de arrasto como a de sustenta¢do dependem,
em geral, da vorticidade. A for¢a de arrasto depende de forma direta da vorticidade
(3.11), ja para a sustentagdo, a relagio é mais implicita, através da circulagdo que ela
causa (3.14). A vorticidade ¢ a circulagio sdo relacionadas através do Teorema de

Stokes:

I=pii-dl = rot(ii)-dS = [@-dS (3.17)
[4 s S

Uma vez gerados na superficie do corpo, 0s vortices sdo convectados para o
interior do fluido e, a partir dai, a dindmijca do escoamento quase ndo depende mais
da viscosidade. No interior do fluido, o escoamento se da essencialmente como se
nio houvesse mais atrito interno, como se o fluido fosse ideal (u = 0).0s vortices
gerados sdo convectados pelo escoamento mas, simultaneamente, sdo lentamente
difundidos pelo efeito da viscosidade no interior do fluido. Em primeira aproximag&o
a difusdo dos vortices pode ser ignorada e pode-se considerar apenas a sua convecgao

pelo escoamento.

Portanio, para o escoamento de m fluido ideal (un = 0) , a equagdo da

guantidade de movimento fica:
Bii . N
pEt-er(u-V)u =-Vp— pgk (3.18)

Essa equagio & conhecida como Equacio de Euler para fluido ideal.
Integrando a Equagdo de Euler ao longo de uma trajetoria e com escoamento

irrotacional, obtém-se a Equagdo de Bernoulli:
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Figura 3.3: Particula ao logo de sua trajetoria, sujeita & gravidade e as forgas de contato.
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0.V P -
at+ 2 +p U= f() (3.19)

Onde ¢ é o potencial de velocidades, definido por:

ﬁ=grad(¢)=V¢=%f+%f+%E (3.20)

¢ U = -gz, o potencial gravitacional.

Para regime permanente, a equagdo de Bernoulli fica da seguinte forma:

'LP
—+ Ly gz=cte (3.21)

2 p
A equaciio de Bernoulli afirma que a pressdo cresce quando a velocidade
diminui ou decresce quando a velocidade aumenta. A constante do lado direito da
equagiio € a mesma para uma {rajetoria, mas como as particulas fluidas partem de
condigtes idénticas (caso do escoamento uniforme ao longe distorcido pela presenca
de um corpo, asa ou aerofélio), assim, a constante em (3.21) é a mesma para todas as

particulas fluidas.

3.5. Teoria de Félios e das Superficies de Sustentacio

Por asa entendemos as superficies que suportam aeronaves por meio da rea¢do
dindmica com o ar. Uma aeronave pode ter varias asas que podem estar fixas na
fuselagem ou possuir movimento relativo a esta, como 1o €aso de helicopteros. Neste

trabalho, estaremos interessados somente em asas fixas.

As reagdes dinimicas com o ar se devem a duas fontes basicas: a distribuicdo
de pressdo ¢ a distribui¢do das tensdes de cisalhamento pela superficie da asa. Esses
530 os Gnicos mecanismos pelos quais um fluido pode transmitir forga para um corpo

ao redor do qual esté escoando.
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Para todos os tipos de asa, o desempenho aerodindmico ¢ fortemente afetado
pela geometria de sua segdo transversal, em outras palavras, pela forma do perfil da
asa. As caracteristicas de uma asa podem ser preditas por parametros aerodindmicos
conhecidos do perfil da asa se a envergadura (distdncia entre os dois extremos
longitudinais da asa) ¢ significativamente grande em comparagio a corda (distincia
entre os bordos de ataque e fuga), se 0s nameros de Mach envolvidos no fendmeno
sio subcriticos e se a componente da velocidade na diregdo da corda ¢
significativamente maior que componente na diregdo da envergadura. Esses

requisitos sio atendidos por um grande namero de aplicagdes.

3.5.1. Escoamento ao Redor de Perfis de Asa 2D)

Antes de comegar a analise do escoamento a0 redor de segdes de asas (perfis) €

necessario a apresentagio das caracteristicas geométricas dos perfis:

Borda de ataque

Espessura
Linha média de cambagem

————— o )
|‘ Corda ¢ =J] \Bordo de

fugn

Figura 3.4: Dimensdes importantes de um aerofélio.

A linha média de cambagem & o lugar geoméirico dos pontos médios de
segmentos perpendiculares & propria linha, ¢ que ligam as faces inferior ¢ superior. O
ponto extremo dianteiro da linha média de cambagem € o bordo de ataque € 0
traseiro é o bordo de fuga. A linha reta que liga os bordos de ataque e fuga ¢ a linha
da corda do aerofdlio, e a distincia entre os bordos medida nessa linha € a chamada
corda c. A cambagem ¢ a distAncia maxima entre a linha média de cambagem ¢ a
linha da corda, medida perpendicularmente & linha de corda. A espessura € a
distincia maxima entre as superficies superior e inferior, também medida

perpendicularmente & linha de corda.
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A asa de uma aeronave a sustenta por através de uma forga chamada de
sustentacdo (L), que é gerada pelo movimento num meio fluido, no caso, o ar. Essa
sustentagdo & definida como a componente de forga agindo no plano de simetria
numa direcio perpendicular & linha de vo, J4 a forga que s opde diretamente ao
movimento da asa pelo ar estd sempre presente e ¢ chamada de arrasto (D), como ja

fora mostrado nesta se¢do.

No escoamento através de um aerof6lio os efeitos de sua espessura séo menos
importantes que os efeitos devido ao seu comprimento {corda). Portanto, pode-se
aproximar o escoamento no félio por uma superposi¢do de trés escoamentos sobre

placa plana.

OBS: O principio da superposigfio ¢ vélido pois se trata de uma aproximagdo

de um escoamento de fluido ideal (equagdo de Euler).

Tomado um f6lio genérico sob a agio do escoamento U, com dngulo de ataque

oo’
m
[Rap—— —“—‘_'__'_,__.—-—'—
y“—-—__
U,
Figura 3.5: Félio sob a agfio do escoamento U, com angulo de ataque o,
O escoamento pode ser dividido em trés partes:
r
To 2 1\ Yo %o Y3
Vo — e - e S —pm
—— -+ — 1 + | e— 3 —1
— 1 — - 2 — - L3 .
u2 T Y3
U %4

Figura 3.6: Superposigdo de trés escoamentos sobre placa plana,
A circulacdo T e a componente vertical U, o,, dependem do angulo de ataque.

Utilizando a equagfio de Bernoulli pode-se obter o formato das distribuigdes de

pressdo em cada parcela do escoamento:
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3

Figura 3.7: Formato do campo de press3o nas parcelas 2 e 3 dos escoamentos sobre placa plana.

Pode-se, dessa forma, calcular o momento e a sustentagio gerados pelo

escoamento:
M= %prjczao (321)
L=—pU, (3.22)

Para se obter o valor da circulagfio deve-se aplicar a condigdo de Kutta:
« A velocidade no bordo de fuga ndo deve ter componente transversal”, isto

implica que:

L (3.23)

- o

2w /2 i

r b}
(7% e

~— Jom

Figura 3.8: Condigiio de Kutta para o bordo de fuga.

Da condigiio de Kutta consegue-se calcular a circulagio, a sustentagdo e, por

fim, o coeficiente de sustentagdo do aerofSlio (perfil de asa).

Circulagdo: I = U a, (3.24)

Sustentagio: L = zpcU, e, (3.25)

Cocficiente de Sustentagdo: C, = —L—z— =2za, =m,Q, (3.26)
1/2pU "¢
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O coeficiente de arrasto ¢ muito pequeno se comparado com 0 de sustentagio,
isso devido & auséncia do arrasto viscoso, causado pelo atrito entre o fluido € a

superficie do félio.

Em um escoamento potencial é impossivel aparecer uma circulagdo T, pois ndo
ha viscosidade e logo nfio ha formagdo de vortices. Assim, esta circulagdo deve ser

definida externamente e somada a teoria do potencial de velocidades.
A curva Cp X a, possui declividade 27, mas apenas em uma certa regifio. A

curva real de CL X o, & mostrada na Figura 3.9.

FEstol devido 3 separagiio
do escoamento

g =
£, man Q

-— - dCr ylinagtodo
dy = do = sustentaclio

Figura 3.9: Curva do coeficiente de sustentacio.

3.5.2. Asas Finitas (3D)

As caracteristicas aerodinimicas de uma asa finita sdo diferentes daquelas
referentes a perfis porque aparecem componentes do escoamento na dire¢do da
envergadura, ou seja, O escoamento & tridimensional. Isto fica mais claro ao
examinarmos a Figura 3.10. Nela percebemos que a diferenga de pressdes na face
superior e inferior da asa, que ¢ responséavel pela geragio de sustentagio, também faz
com que o fluido perto das bordas laterais da asa tenda a contornar as bordas. Como
resultado, na face superior da asa, aparece geralmente uma componente do
escoamento na direcdo da envergadura no sentido da raiz da asa, causando a

deformagdo das linhas de corrente neste sentido.
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Similarmente, na face inferior da asa, hi geralmente uma componente de
velocidade direcionada para a borda lateral, causando a deformagdo das linhas de

cotrente neste sentido.

frontat C ——
Altn pressiio

Figura 3.10: Escoamento ao redor de uma asa finita.

A tendéncia do escoamento a “vazar” pelas bordas laterais da asa tem um outro
efeito importante na aerodinimica da asa. Esse escoamento estabelece um
movimento helicoidal & jusante da asa, isto &, aparecem vorfices de fuga em cada

bordo lateral. Esses vortices estdo representados na Figura 3.11.

O efeito dos vortices de fuga correspondentes a uma sustentagdo positiva ¢
induzir uma componente vertical para baixo da velocidade na asa e atras delas
chamada de downwash (w). A magnitude desta componente em qualquer segdo
transversal é igual & soma dos efeitos de todos os vortices de fuga ao longo da
envergadura inteira (diregdo y). E assumido que as caracteristicas aerodindmicas da
segdo em relagio as linhas de corrente rotacionadas sdo as mesmas que a segdo teria

no caso bidimensional.
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Figura 3.11: Esquema dos Vortices de Fuga.

As conseqiiéncias do efeito downwash séo muito prejudiciais para o
desempenho da asa, pois causa uma redugio do é4ngulo de ataque efetivo,
conseqilentemente uma redugdo da sustentagdo e h4 a formagdo de um arrasto

induzido de alta importincia.

Figura 3.12: Efeitos causados pelo downwash.

O angulo de ataque efetivo, devido ao cfeito downwash fica:

a,=a,-q, (3.27)

Onde a.r é 0 angulo de ataque efetivo, a, € 0 geométrico (original) e o € ©

induzido.

hd —a, -2 (3.28)
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As forgas de sustentagdo e arrasto induzido sdo dadas por:
L (y)=pU,I (3.29)

D,(y)=-L a; =—pwl (3.30)

Pode-se perceber que as forcas de sustentagdio e arrasto dependem da

distribuigdo de circulagdo ao longo da diregdo y (envergadura).

h =z

F'{y)

bs2

-bf2 i)

Figura 3.13: Esquema da distribuigio genérica de circulagdo ao longo da envergadura de uma asa.

Um caso especial muito importante € a distribuigdo eliptica de circulagfio, esse
tipo de distribuigiio fornece o minimo arrasto induzido. No caso real, as distribuicdes
de circulagio cm asas ndo possuem variagGes bruscas ¢ possuem valor maximo ( I')
no plano de simetria (y =0), portanto, nfo diferem muito da distribuigdo eliptica.
Sendo assim, utilizando a distribuigdo eliptica, o resultado estard muito proximo do

valor real.

Para uma distribuicio eliptica de circulagfio ao longo da envergadura tem-se:

2
y
C=r _[1-| = 3.31
s [b/ZJ (3.31)

O angulo de ataque induzido é constante ao longo de toda envergadura ¢ ¢ dado

pela equagdo:

=— (3.32)
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A forga de sustentaggo, por sua vez, ¢ dada pela seguinte expressdo:

2

y
L=pUTl [1-|— 3.33
pUL, (b/z] (3.33)

¢ o coeficiente de sustentagdo Cp:

1 ”’J? - I b

= | L (3.34)
1/2pU,°S 57, 20,8

L

Comparando as equacdes (3.32) e (3.34) obtemos o valor do dngulo de ataque

induzido em fung¢do do coeficiente de sustentagdo:

a =S8 o 3.35)
" om =
b2
Onde 4= T & a chamada Razdo de Aspecto da asa finita.
Como D, =-L g, temos que Cj, =, , ¢ portanto:
C.?

C,. =— 3.36

¥ 71}4 ( )

A equagdo (3.36) fornece o arrasto induzido minimo.

O valor total do coeficiente de arrasto & a soma da parcela de arrasto quando Cp
& nulo e da parcela de arrasto induzido (a parcela de atrito nio ¢ somada por se tratar

de escoamento de fluido ideal):

=Cpo +K£7;— (3.37)
Onde K = 1 para distribuigdo eliptica de circulagio (arrasto induzido minimo) e
K > 1 para distribuigdo real.
Para uma asa infinita (2D), ou seja, para um perfil de asa, temos C; =m,,,
onde m, = 2w. Para asa finita (3D} temos C; =m a,, pois a, =a,—a,. Dessa

forma, pode-se determinar m para uma asa finita e quantificar a influéncia do efeito

downwash na sustenta¢fo.
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C
Bn G0 3 o 2 (3.38)
m m, i
]__
aﬂ
Como:
a,-=—%;‘——>m= Ze (3.39)
1+-°
A

e m, =2z, temos que o coeficiente de sustentagdo para uma asa finita ¢ dado
por:

A (3.40)

L,,f /]
1+

Analisando as equagdes (3.36; 3.37 ¢ 3.40) fica evidente o problema que o

efeito downwash causa ao desempenho de uma asa.
As possiveis solugBes para a redugio do efeito downwash séo:

Aumentar a envergadura para aumentar a razio de aspecto da asa,

conseqiientemente diminuir o arrasto induzido e diminuir a redugfo da sustentaggo.

Colocar uma barreira nas pontas da asa (winglets) para bloquear a circulagdo
nas extremidades da asa, impedindo a formacdio dos vortices de fuga e

consegiientemente diminuir os efeitos do downwash.

3.53. “Winglets”

J4 foi visto neste capitulo que a diferenga de pressdo entre a parte inferior
(maior pressdo) e a parte superior de uma asa finita (menor pressdo) causa uma
circulagio na ponta da extremidade livre da asa, essa circulagdo, associada ao
escoamento uniforme do fluido gera os chamados vortices de fuga, ou de ponta de
asa. A presenga desses vortices cria uma componente vertical de velocidades,

chamada dowrwash.

E exatamente essa componente vertical que reduz a sustentagdo e cria o arrasto

induzido, piorando a performance das superficies de sustentagao.
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Convantionat Blanded
wingtip winglot

Figura 3.14: Comparag8o entre asas com e sem winglefs.

Winglets sio apéndices com perfis de asa (aerofélios) que se localizam na parte
superior da extremidade livre da asa. Os winglets sdo utilizados para diminuir a
energia gasta na formagéo de vortices de ponta de asa, reduzindo o efeito downwash
conforme mostrado na Figura 3.14. Isso causa redugio do arrasto, por isso a
demanda sobre o sistema propulsivo da aeronave ¢ reduzida, diminuindo seu

consumo de combustivel.

prassfo na parte superior da asa

R

/r I

presséc na parte inferior da asa

vorticidade

Figura 3.15: Formagiio de vortices de fuga em asa sem winglet devido ao campo de pressdo.

A Figura 3.15 mostra a formaggio dos vortices de fuga na ponta de uma asa.
Essa circulagfio, da parte inferior para parte superior da asa, ¢ efeito da diferenca de
pressdo na ponta da asa, onde, sem nenhuma barreira, o fluido (ar) pode circular a

ponta da asa tendendo a ir para parte de cima da asa.
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asa com winglet

\T presséTu na parta;r superior ;a asa M
T fF T F %8 §<

pressdo na parte inferior da asa

vorticidade

Figura 3.16: Efeito causado pelo winglef em uma asa.

Os winglets, portanto, sio usados para formar uma barreira fisica ao
escoamento de ar que tende a gerar a circulagio na ponta da asa, tentando eliminar a

geragio de vortices de fuga, conforme a Figura 3.16.

Pela teoria, os winglets seriam uma grande solugdo para o problema do
downwash, mas os resultados praticos mostram que a redugdo do arrasto induzido em
acronaves comerciais é de, em média, 7 a 9%; um valor muito longe do esperado.
Além disso, os winglets, se mal projetados, podem elevar os carregamentos sobre as

asas, como por exemplo, o momento fletor na raiz da asa.

A influéncia dos winglets no desempenho das aeronaves, embora venha sendo
estudada j& a algum tempo, ainda ndo € um tema completamente compreendido,
sendo merecedor de estudos mais aprofundados. O campo de pesquisa do tema ¢
muito abrangente, inciuindo desempenho aerodindmico, influéncia nos
carregamentos (forgas, momentos) da aeronave e sua respectiva influéncia na

estabilidade de vo.
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4. Meétodo dos Volumes Finitos

O método dos volumes finitos é um método numérico para a resolugio das
equaghes que regem um escoamento ¢ também é chamado de discretizagio em
volumes de controle. Este algoritmo comegou a ser utilizado em problemas de
mecénica dos fluidos computacional na década de 60, se destacando em relacdo aos
demais métodos por possibilitar a modifica¢do da forma e localizagéio dos volumes

de controle associados com um ponto da malha.

O método parte da geragio de uma malha na regifio que se quer estudar. Cada
né desta malha ¢ envolvido por um pequeno volume, que sdo denominados volumes
de controle. Esses volumes n3o se interceptam e neles se faz um estudo das equagBes
diferencials que regem o fendmeno que sera estudado, como, por exemplo,
transferéncia de calor ou um escoamento. Nessas equagdes aplicamos a identidade
com a expansio de Taylor e verificamos que as equagGes resultantes sdo consistentes
com o balango de calor e massa. A vantagem desse tipo de abordagem € a facilidade
no entendimento e a facilidade na interpretagdo fisica. A equagdo diferencial € entdo
integrada em cada volume de controle. Para cada volume entdo € definida uma
fungdio de ¢, que é o pardmetro que se quer determinar, em relagdo ao tempo ¢
espago. Uma caracteristica interessante deste método € que a solugio garante a
conservagdo integral de massa, momento e energia em um volume de controle e, por

conseqiiéncia, em um conjunto deles, seja qual for o nimero de pontos em questdo.

E interessante observar as diferencas do método dos volumes finitos (MVF)
com outros métodos numéricos mais comuns. O método dos elementos finitos (MEY)
encontra solugdes aproximadas para todos os pontos da regido em questdo, enquanto
o método das diferengas finitas (MDF) encontra valores exatos para os nés da malha,
mas n3o faz nenhuma consideragio sobre pontos da regifio que ndo sdo nos,
aproximando-se do que é observado em ensaios em laboratério, onde propriedades
sdo medidas apenas em alguns pontos. O MVF utiliza o mesmo tipo de abordagem
que o MDF, porém enire os pontos da malha ¢ feita uma interpolagfo para gue se
tenha uma medida aproximada do valor das propriedades dos pontos que ndo sio

nés.
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Problemas de mecénica dos fluidos sfio, via de regra, modelados por sistemas
de equagdes ndo lincares, resolvidos em geral de forma seqiiencial, onde
acoplamentos delicados estdo presentes. Para este tipo de formulagéo, é muito dificil
provar matematicamente que uma aproximago numérica 4 estavel e convergente.
Por isso, sdo estabelecidas duas outras condigBes que, juntas, sdo necessdrias e
suficientes para que a solugdo seja convergente. S&o elas a consisténcia e

estabilidade.

Um dos requisitos fundamentais de uma aproximagdo numérica é que ela
reproduza a equagdio diferencial quando os tamanhos da malha espacial e temporal
tendam a zero. Isto &, os erros de truncamento devem tender a zero quando a malha
tender a um infinito nimero de pontos. A aproxima¢do numérica que possuir ¢ssa
caracteristica & dita consistente. Todo modelo numérico desenvolvido a partir das
equagdes na forma conservativa usando volumes finitos & consistente, como serd

visto adiante.

Outra caracteristica importante desejada é que a solugdo numérica obtida seja a
solugdo exata das equagdes discretizadas, ou seja, tenha estabilidade. Aqui, diversos
fatores interferem, tais como erros de arredondamento de maquina, que vdo se
multiplicando ¢ podem instabilizar a solugdo; dificuldades de tratamentos de
acoplamentos entre as varidveis, fazendo com que algumas variaveis evoluam mais
rapidamente que outras, provocando instabilidades, etc. A questdo de estabilidade é o
mais sério problema na obtengdo da solugdo numérica, exatamente pela falta de

conhecimento das caracteristicas matematicas das aproximagdes.

Para atender o requisito de consisténcia, 0 método dos volumes finitos baseia-
se em quatro regras bésicas, que devem ser obedecidas pelas equagdes de

discretizagiio, a fim de prover realismo fisico e balango completo:

e Regra 1: Consisténcia nas faces do volume de controle.

Quando uma face é comum a dois volumes de controle, o fluxo através dela
deve ser representada pela mesma expressdo nas equagdes de discretizagiio de

ambos.
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e Regra 2: Coeficientes positivos.

Se uma variavel de um nd vizinho aumenta, a do proprio ndé deve aumentar
também (e ndo diminuir). Esta regra garante a continuidade das fungdes analisadas e

do meio material.

. Regra 3: Linearizacdo negativa do termo de fonte.

Se houver um termo de fonte dentro da equagio diferencial, e ele depender da

varidvel em questdo, esta dependéncia depois da linearizagfo deve ser do tipo:
S=8.+8,T, (4.1)

sendo S o termo de fonte médio ¢ Tp a varidvel dependente, com Sp
obrigatoriamente ndo positivo. Caso contrario, o sistema apresentaria uma espécie de
realimentacio positiva, isto é, pensando em fransferéncia de calor, quanto maior a
temperatura do elemento mais calor é gerado. Isto € fisicamente irreal e

matematicamente faz com que o método numérico divirja.

e Regra 4: Soma dos coeficientes vizinhos igual ao coeficiente do no.

A equacdo gerada pela integragiio apds a aplicagdio do MVF tem a seguinte

forma:
aplp = Za"bTH,, +h (4.2)

onde a, é o coeficiente do n6, T, é o valor da varidvel dependente no no,

s80 os coeficientes da vizinhanga, Ty, 0 valor da varidvel dependente na vizinhanca e

b uma varidvel gue inclui o termo de fonte. A regra em questio diz que a, = Za,,b .

Isto tem que ser verificado para que a equaciio encontrada valha para um valor T e

também para um valor T + ¢, onde ¢ é uma constante.

Apbs a aplicagio do método nas equagdes diferenciais, recai-se num sistema de
equagbes algébricas linear, que pode ser resolvido por métodos iterativos (Gauss-
Seide!, sobre-relaxacio, subrelaxa¢do) ou elimina¢fio de Gauss. No que diz respeito a
metodologia de aplicagdo do método, o MVF se assemelha muito ao MEF com

fungdo peso iguala 1.
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Os volumes de controle sdo definidos usando-se um esquema de
armazenamento ndo escalonado, como mostrado na figura abaixo. Desse modo, todas
as variaveis sdo armazenadas no centro da célula do volume de controle € 0 mesmo
volume de controle é utilizado para a integracdo de todas as equagbes de

conservagio.

J-ésima linha
v 3
Né (1,1)
X
Local da
4 STk {J - 1} ésima
L 4 nha
{1~ 1) —ésimay I — ésima
linha linha

Figura 4.1: Esquema de armazenamento no volume de controle.

A integragio das equagdes diferenciais serd mostrada para um conjunto de
equagbes no caso unidimensional, sendo que estas podem ser facilmente estendidas
para 0 caso bidimensional ou tridimensional. Sejam as equagdes diferenciais para
continuidade e conservagio de momento em regime permanente, desprezando-se a

forga gravitacional e sem termos de fonte, que € o caso do presente estudo:

opu) _, (4.3)
o
ox Ox

Essas equagbes podem ser integradas no volume de controle empregando-se o

Teorema da Divergéncia:
olpu)
| v = [ puda (4.5)

A integrago das egs. (4.3)e (4.4) resulta no seguinte:

J, —J,=0 (4.6)
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J,u,~J,-u,=p, - p,)A+F-AV (4.7)

As egs. (4.6) e (4.7) sio equagBes algébricas que podem ser resolvidas dado
que as varidveis indeterminadas u e p sfo interpoladas de uma maneira que relaciona
seus valores nas faces do volume de controle aos valores no centro do volume. O

procedimento de discretizagfio se baseia no esquema ilustrado na figura abaixo:

é &

v

Figura 4.2: Esquema dos volumes de controle para discretizagio.

A solugfio das equagbes expressas acima requer o cilculo da pressio nas faces
do volume de controle (p. e py), que se determine o fluxo nas faces (J. ¢ J,) ¢ a
interpolagdo para relacionar os valores nas faces com o valor da incégnita » com 0s

valores nos centros dos volumes de controle.

O fluxo nas faces sio obtidos de tal forma que as wvelocidades na face
obedecem a um balango médio do momento. J4 as pressdes nas faces sdo obtidas de
tal forma que as velocidades armazenadas no centro das células obedece ao balango

de massa.

4.1. Métodos de Resolucio

Dentro do método dos volumes finitos pode-se escolher dois métodos de
resolugdo, o segregado e o acoplado. O processo de discretizagfio € idéntico para os
dois, porém a abordagem usada para linearizar e resolver as equagdes discretizadas €

diferente.

Segregada:

As equagdes sdo resolvidas separadamente e¢ em seqiiéncia. Por que as
equacdes governantes sio ndo-lineares e acopladas, sdo necessdrias iteragdes do ciclo
de resolucdo para que uma solugio convergente seja encontrada. Cada iteragdo

consiste nos passos ilustrados na Figura 4.3:
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| Atualiza propriedades

3

Resoluve sguacgties de momento.

¥
Resolve equagio de confinuldade.
Atualiza pressdo e fluxo de massa nas faces.

r

Resolve squacies de energia, espécies,
turbuléncia ¢ sutras grandezas escalares.

l

Co éncia ? | { Parar

Figura 4.3: Passos da iteragiio para a resolugio segregada.

Para utilizar este método fazem-se necessérios célculos adicionais para
interpolagio de pressdo e acoplamento pressdo velocidade. Os métodos de
acoplamento pressdo-velocidade sio SIMPLE e SIMPLEC para regimes
permanentes e PISO para transitorios. A interpolagio de press@o pode ser do tipo
linear, de segunda ordem, ponderada por forgas de corpo, ¢ PRESTO (PREssure
STaggering Option).

Por Gltimo, vale ressaltar que é possivel ajustar os fatores de sub-relaxagéo.

Acoplada:

As equagdes de continuidade, momento, energia ¢ transporie de espécies sdo
resolvidas simultancamente, sendo que as duas Gltimas podem ndo estar presentes,
conforme a modelagem do problema. Equagdes para grandezas adicionais sdo

resolvidas seqiiencialmente.
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——DJ Atualiza propriedades.

3

Rasolve equagies de continuidade, momento,
energla e espécies simultaneamente.

i

Resolva aquacies de turbuldncia @ outros ascalares.

1 Convergéncia? } #{ Parar

Figura 4.4: Passos das iteragBes da resolugdo acoplada.

Para este método de resolugio podemos ajustar o nimero de Courant, que

controla a discretizag3o no tempo para resolugio acoplada.

Voltando ao caso geral, estdo disponiveis no software a ser utilizado quatro

esquemas de discretizagio:

1

Primeira ordem (escoamento alinhado com a malha),

segunda ordem (escoamentos complexos),

Power Law (mesma acuréicia do esquema de primeira ordem),

QUICK (escoamentos rotativos com malhas quadrilaterais e hexaedrais).

Para a linearizago na resolugdo acoplada, os métodos implicito e explicito
podem ser utilizados. No método implicito, os valores dos nos vizinhos que séo
conhecidos e que ndo sdo conhecidos sdo utilizados para a formulagdo de um sistema
de equagdes. No método explicito, o valor de uma grandeza para determinado no e
calculado utilizando somente os valores da mesma grandeza para nos vizinhos onde

o valor e conhecido.
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4.2. Discretizacio das Equacdes

A discretizacio das equacgles governantes pode ser ilustrada facilmente
considerando uma equagfo de conservagdo para regime permancnte de uma
quantidade escalar ¢. Esta equagdo estd escrita adiante na sua forma integral, para um

volume de conirole ¥ arbitrario:
§ p¢v-dA=§r¢v¢-dA+ LS¢dV (4.8)

p = densidade

v = vetor velocidade

A = vetor area da superficie

T4 = coeficiente de difusio para ¢
V¢ = gradiente de ¢

84 = fonte de ¢ por unidade de volume

A eq. (4.8) ¢ aplicada para cada volume de controle no dominio computacional.
A célula triangular bidimensional mostrada na Figura 4.5 ¢ um exemplo de volume

de controle. A discretizagdo da eq. (4.8) numa dada célula resulta em:

N fuces uces
I;pfgﬁfflf :§r¢(v¢)"Af +8,V (4.9)
Niaces = niémero de faces da célula
¢r= valor de ¢ convectado através da face /
pr= fluxo de massa através da face f
Ar= érea da face f
(V ), = magnitude de Vgnormal a face

¥V = volume da célula
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VA

Figura 4.5: Volume de controle utilizado para ilustrar a discretizag8o da equagio de transporte de uma
grandeza escalar.

O software utilizado, Fluent 6.1, armazena valores discretos do escalar ¢ nos
centros das células (c0 e ¢! na Figura 4.5), de acordo com um arranjo que chamamos
de co-localizado. No entanto, os valores de face ¢ fazem parte dos termos de
convecgio na eq. (4.9) e precisam ser interpolados dos valores dos centros. Isto ¢

conseguido utilizando esquemas upwind.

Este tipo de esquema significa que gr é derivada de quantidades da célula a
montante, com relagdo 4 velocidade normal na face. Fluent 6.1 disponibiliza quatro

esquemas upwind. S#o eles:

. Unwind de primeira ovdem:

Quando este esquema ¢ selecionado, as quantidades nas faces das células s&o
determinadas através da assungio de que os valores de qualquer grandeza nos centros
representam um valor médio que pode ser tomado na célula inteira. Assim, os valores

nas faces sio idénticos aos valores nos centros das células & montante dessas faces.
. Power Law:

Este esquema interpola grusando a solugdo exata para a equagdo de convecgio-

difuséo unidimensional:

8¢ N_0.04
ax(P”¢)— rw i (4.10)

onde I' ¢ pu s¥o constantes no intervalo &x. A eq. (4.10) pode ser integrada,

resultando na seguinte expresséo que relaciona ¢ com x:
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pe” |-t
$)-4l,, TP L) -
¢|x=L—¢ - exp(Pe)—l (“411)

x={

onde Pe é o niimero de Peclet, dado pela expressédo:

pul
Pe=— 4,12
T (4.12)

A variagio de ¢@(x) entre x=0 e x=L estd mostrada na figura XX para uma faixa
de nameros de Peclet. Vé-se nesta figura que, para Pe elevado, o valor de ¢ em
x=L/2 é aproximadamente igual ao valor na célula 3 montante. Isto indica que
quando o fendmeno estudado ¢ dominado pela convecgdo, a interpolagdo resultante €

equivalente ao esquema upwind de primeira ordem.

Fluent 6.1 utiliza a eq. (4.11) num formato de lei de poténcias equivalente para

interpolar os valores nas faces.

L

ba

Figura 4.6; Variagio de ¢ entre x=0 ¢ x=L.
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o  Upwind de segunda ordem:

Quando este esquema é utilizado, as quantidades nas faces das células sdo
computadas utilizando-se uma reconstrugdo multidimensional linear. Nesta
abordagem, uma precisdo de ordem mais elevada é conseguida nas faces das células
através da expansdo em séric de Taylor dos valores armazenados (valores centrais)
em torno do centro de massa da célula. Por conseguinte, ¢ ¢ calculado segundo a

expressdo:
¢, =¢+Vg-As (4.13)

onde ge Vg sio o valor da grandeza escalar e seu gradiente no centro da célula
3 montante, respectivamente, ¢ As é o vetor deslocamento do baricentro da célula
para o baricentro da face. Esta formula¢fo requer a determinagédo do gradiente Vgem
cada célula. Este gradiente ¢é calculado utilizando-se o teorema do divergente, cuja

forma discreta é escrita da seguinte maneira:

Nfaces

Vé =-:/— ; ¢, A (4.14))

Aqui o valor af ¢ igual 3 média de ¢ das duas células adjacentes a face. Por

fim, limita-se o valor de V¢ de modo que o valor de ¢ calculado ndo ultrapasse os

valores minimo ¢ maximo calculados para os centros.

Os termos de difusfio na eq. (4.9) sdo discretizados pelo esquema de diferengas

centrais e por isso tem sempre uma precisio de segunda ordem.

A equagdo de transporte de grandeza escalar (eq. (4.9)) tem como incognitas o
valor de ¢ no centro da célula assim como nas células vizinhas. Esta equagio
geralmente sera ndo-linear em relagiio a estas varidveis. Uma forma linearizada da

eq. (4.9) pode ser escrita da seguinte forma:

app=>Y a,.d, +b (4.15)

Wz
onde o indice viz se refere as células vizinhas, € ap € a,;: s80 os coeficientes

linearizados de g ¢ di.
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O namero de vizinhos para cada célula depende da topologia da malha, mas
serd geralmente igual ao niimero de faces do contorno da célula, sendo que as células

de fronteira s#0 as excegdes a essa regra.

Equagdes desse tipo sdo escritas para cada célula da matha. Isto resulta num
conjunto de equagBes algébricas com uma matriz de coeficientes esparsa. Para
equacdes escalares, Fluent 6.1 resolve o sistema linear resultante usando o algoritmo
iterativo de Gauss-Seidel em conjunto com um método algébrico muitimalha

(AMG), que serd descrito adiante.

Por causa da nio-linearidade das equacdes, € necessério controlar a variagdo de
¢. Este controle é tipicamente feito através de subrelaxacdo, que reduz a mudanga de
¢ produzida durante cada iteragdo. O novo valor da varidvel ¢ em uma célula
depende do valor da iteragio anterior, ¢ghs, @ mudanga computada em ¢, Ag, € o fator

de subrelaxagdo, &, como segue:
G=0, AP (4.16))

Do mesmo modo que as grandezas escalares que sdo convectadas e difundidas,
as pressoes nas faces também precisam ser interpoladas dos valores centrais. Seguem

os esquemas de interpolagio de pressdo utilizados pelo Fluent 6.1:

. Esquema Padrdo:

Neste esquema, os valores de pressio sdo interpolados nas faces usando-se 0s
coeficientes da equagio de momento. Este procedimento da bons resultados na
medida em que a variagio de pressdo entre os centros das células seja suave. Se
existem descontinuidades ou grandes gradientes nos termos de fonte de momento
entre os volumes de controle, o perfil de pressdo tem um alto gradiente na face da
célula, e ndo pode ser interpolado utilizando-se este esquema, pois seu uso levaria ao

aparecimento de picos e vales de velocidade fisicamente irreais.

Uma fonte de erro importante ¢ o fato de que Fluent 6.1 assume que o
gradiente normal de presso na parede ¢ nulo. Isto ¢ valido para camadas limite, mas
ndo na presenca de forgas de corpo ou curvatura. A falha do cilculo nesse caso €
manifestada através do aparecimento de vetores de velocidades com componente na

diregéio normal 4 parede.
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= Linear:

Este esquema calcula a pressfio na face do elemento como sendo a média dos

valores de pressdo nos centros das células adjacentes.

" Segunda Ordem:

Este esquema reconstroi a pressdo utilizando a mesma formulagio apresentada
para a interpolagdo do tipo upwind de segunda ordem para termos convectivos. E um
método mais acurado do que os esquemas anteriores, mas pode apresentar problemas

de convergéncia se utilizado no comego dos célculos ou com uma malha disforme.

. Ponderacdo pela forca de corpo:

Este esquema computa as pressdes nas faces admitindo que o gradiente normal
da diferenga entre a pressdio ¢ a forga de corpo é constante. Funciona bem se as

forgas de corpo sdo conhecidas a priori nas equagdes de momento.

] PRESTO (PREssure Staggering Option):

Utiliza um balanco discreto de continuidade para um volume de controle na
face para computar a pressio desta mesma face. O procedimento ¢ similar aos

esquemas de malha escalonada utilizados para casos estruturados.
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5. Escoamento Turbulento

As simulagtes numéricas deste trabalho foram realizadas em duas etapas, 2
primeira para fluido ideal resolvendo a Equagdo de Euler ¢ a segunda para fluido
newtoniano resolvendo a Equagio de Navier-Stokes com modelo de Spalart-

Allmaras para escoamento turbulento.

Este modelo foi escolhido para este estudo pois foi criado especificamente para
problemas aeroespaciais envolvendo escoamentos ao redor de corpos afilados e
proporciona bons resultados para camada-limite sujeitas a um gradiente de pressdo

adverso. Nesta segfo serd apresentado os fundamentos deste modelo de turbuléncia.

Para escoamentos turbulentos, as equagdes de conservagio das quantidades
diferem daquelas para escoamento laminar a fim de descrever as flutuagdes
turbulentas de velocidade e quantidades escalares. Vai ser apresentado um
procedimento (média no tempo) e um modelo para fechar o conjunto de equagdes

que regem o comportamento do fluido.

5.1. Meédia de Reynolds das Equacdes de Conservacio

Pegando como exemplo uma equagio genérica de transporte para uma

quantidade escalar ¢:
3 0
“{p-dV+ —lp-u -¢)=D,+ S 5.1
—(p-9) Bx,.(p u-$)=D, +5, .1
O valor de ¢ em um escoamento turbulento é composto por um valor médio e

uma parcela flutuante: ¢ = #+ ¢, sendo a parcela média definida como:
|- ar (5.2)

At é uma escala de tempo de ordem superior a das flutuagdes turbulentas.
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Flutuagdes turbulentas s3o ditas randdmicas, tal que:

4 =0 (3.3)

Aplicando-se esta técnica a equagio de conservagiio de ¢, chega-se ao seguinte
resultado:

di_ = S _ A O —\ = =

a—t(;)';ﬁ)+aj(p'u"¢)=a—x;(p‘u,' )+D¢+S¢ (5'4)

Desse modo as equagdes de conservagdo agora apresentam valores médios e

um novo termo contendo a correlagdio w, - ¢ que multiplicada pela massa

especifica representa a “difusgo” de ¢ devido a flutuagdes turbulentas.

A equagdo para conservagio da quantidade de movimenio para o caso

turbulento tera a seguinte forma:

b7 d op Ot
—(p-uj)+—(p-u, -u ): ———+—L+p.-g +F

+i(—p-u. .u.)
! J
ax}
Que tem a mesma forma que a equaglio fundamental da conserva¢do da
quantidade de movimento, com as velocidades representando valores médios no

tempo ¢ o efeito da turbuléncia incorporado através das “TensGes de Reynolds”,

- p-u-u,, que € um tensor simétrico de segunda ordem que possui seis Gnicos
termos.

A tarefa principal dos modelos de turbuléncia é prover equages ou modelos de

fechamento que propiciem valores para essas correlagdes.

5.2. Hipoétese de Boussinesq

As Tensdes de Reynolds sdo assumidas proporcionais aos gradientes médios de

velocidades, tendo como constante de proporcionalidade a viscosidade turbulenta, p,

p-u,-uj=p%k-§,-j—u,(—'+—iJ+2 auI

3 E?x—d"' (5.6)

ox,  ox,
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5.3. Modelo de Spalart-Allmaras

Nos modelos de turbuléncia que empregam a Hipotese de Boussinesq, a
questdio principal é como a viscosidade turbilhonar ¢ calculada. O modelo proposto
por Spallart-Almaras resolve uma equaggo de transporte para uma quantidade escalar

que é uma forma modificada da viscosidade cinematica turbulenta.

5.3.1. Equacio de transporte

A variavel transportada no modelo de Spalart-Allmaras, v, é idéntica a
viscosidade cinemética turbulenta exceto nas regides proximas & parede (near-wall

region). A cquagdo de transporte para v ¢é:

2
Oy ~ & ~ 1 a - OV ov
E(PV)*faj—(PWrLGv +;[¥{@+PV)&—1}+C52P[K] :\_Yv +Sy  (5.7)

J J

onde G, é a produgdo de viscosidade turbulenta e v, € a destruigiio de

viscosidade turbulenta que ocorrem nas regibes préximas a parede, devido ao

bloqueio da parede e ao amortecimento da viscosidade. o5 € C;, sdo constantes e v ¢

a viscosidade cinematica molecular. s; € o termo fonte.

5.3.2. Modelagem da Viscosidade Turbulenta

A viscosidade turbulenta, w, é calculada de:
=0 l’5“121 (5 8)

onde a fungdo de amortecimento (damping) viscoso, f,, ¢ dada por:

(5.9

onde z=% (5.10)
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5.3.3. Modelagem da Producio de Turbuléncia

O termo de produgdo, Gy, ¢ modelado por:

G, =CypSV (5.11)
onde:

= v

S =S+Wﬂz (5.12)
com:

X
=1-
fo=l-r (5.13)

c; ¢k sdo constantes, d ¢ a distincia da parede, e S ¢ uma medigio escalar do

tensor de deformagdo. S é bascada na magnitude da vorticidade:

s = 29,0, (5.14)

onde € € o tensor rotagdo (1/2 rot (u;)):
1 Bu, ©Ou;
O =2 7
B z[axj ax,.J )

53.4. Modelagem da Destruiciio de Turbuléncia

O termo de destrui¢iio de turbuléncia € modelado por:

~n2
Y, = Cwlq’m(g] (5.16)
onde:
1
B 1+C2,3 6
fa) _glrgﬁ_'_cgs} (5.17)
g=r+Carl®—7) (5.18)
v
r= :S"-'kzdz (5.19)
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5.3.5.

Cuwi, Cuz € Cys 830 constantes.

Constantes do Modelo

As constantes do modelo de Spalart-Allmaras s30: Cy1, Co2, Gvs Cyts Cwn Cuz,

Cw; ek, e seus valores sdo:

5.3.6.

nula.

2
Cbl = 0‘1335’Cb2 = 0.622,0’1’}‘ e ‘3—,Cv1 =7.1

1
_ Cp1 ks ( +C‘52),Ca,2 =0.3,C,3 = 2.0,k = 0.4187

C
k2 oy

@l

Condigfio para Parede

Nas paredes, a viscosidade cinematica turbulenta modificada, v , € imposta
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6. Malhas Computacionais

6.1. Geometria do Problema

A geometria estudada foi criada com o infuito de simular um ensaio em tiinel
de vento, apresentando, por sua vez, uma asa trapezoidal de perfil simétrico com ou
sem winglets inserida numa tubulagfio retangular, de dimenstes: Ax = 30 m, Ay=16m
e A=16 m, onde ocorrera o escoamento. Para a geragio das malhas computacionais
foi utilizada apenas metade da geometria original aproveitando a simetria do
problema e reduzindo o tempo (custo) computacional das simulagBes. A Figura 6.1
mostra a geometria em quesifo ¢ a Figura 6.2 mostra a geometria utilizada para

geragdo das malhas (metade da geometria original).

L,

N
FLUENTE.) P, eogreguied,

Figura 6.1: Geometria usada para simulagio numérica de ensaio em tiinel de vento.

&

S ALENTE1 Mwmﬁ

Figura 6.2: Geometria utilizada para geragfo das malhas (Simetria).
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Aspectos de projeto de asas como restrigdes estruturais, busca de um alto valor
de Cp mix através do design do perfil, prevenciio de formag@o de onda de choque
através do formato da asa, ndo fazem parte do escopo deste trabalho, pois a
finalidade do mesmo ¢ fazer uma andlise qualitativa da influéncia dos winglets sobre
os coeficientes de arrasto e sustentagdo de uma asa. Por isso foi utilizada uma
configuraciio simples de asa, com perfil simétrico. Os aspectos geométricos da asa

estudada sfio mostrados pela Figura 6.3, sdo eles:

€;=045m

Direcdo do escoamento
—

cr=2m

Figura 6.3: Aspectos geométricos da asa estudada.
- Razdo de Aspecto (A)=6.74
- Area da vista superior (S) = 9.5 m?
- Semi-Envergadura (b/2) =8 m
-Cordadaraiz(c)=2m
- Corda da ponta (¢;) =0.45 m

A configuragdo geométrica dos winglets foi estabelecida conforme o artigo
técnico []. As Figuras 6.4 e 6.5 mostram as se¢des tipicas e geometria tipica para

winglets, respectivamente.

Neste trabalho foi utilizado um perfil simétrico tanto para asa como para os

winglets para proporcionar o fechamento da malha tridimensional.
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Typical winglet section

gy 2 Upper
surface

Winglet incidence, referenced
1o fuselage centeriine

Figura 6.4: Perfil tipico de winglets.

Figura 6.5: Geometria de winglets em fungfio da corda de ponta de asa.

Uma observagiio que deve ser comentada é a utilizagfio do perfil simétrico. O
embora o perfil simétrico piore a eficiéncia da sustentagdo, este estudo € apenas
qualitativo, ou seja, o resultado principal nfio é o valor dos coeficientes
aerodindmicos da asa e sim a comparagio destes coeficientes para a asa com € sem

winglets.

6.2. Condicdes de Contorno do Problema

Conforme j& explicado anteriormente, a geometria adotada visa simular um
ensaio em tanel de vento, por isso, as condi¢des de contorno do problema devem ser

ajustadas para tal proposta.

A Figura 6.6 mostra as condigdes de contorno utilizadas para as simulagdes no

software Fluent 6.1, sdo elas:
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e Simetna |
uniforme Salda de ’
de I Parede ll fhoco
velocidade {
s il - |
\ B ~
Geid Nowv 25, 2003
ALUENT 6.1 i3 sngregese. lum)

Figura 6.6: Condigdes de Contorno do problema.

- Perfil Uniforme de Velocidade: € a velocidade do escoamento incidente U, na
direcio x (sentido do escoamento). Nesta face o campo de velocidade ¢ imposto

constante ¢ (u,v,w) = (Uy,0,0).
- Saida de Fluxo: é a face de saida do escoamento, de forma que toda a vazio
méssica que entra pela face de perfil uniforme de velocidade saia por esta face.

- Simetria: Esta condigfio impdes velocidade normal nula a face de simetria.

- Parede: As superficies da asa foram definidas como parede, onde o campo de

velocidade é nulo, (u,v,w) = (0,0,0).

6.3. Malhas Geradas

Foram geradas, ao todo, seis malhas, trés condiges de dngulo de atague (0°, 4°
e 8°) para asa sem winglefs ¢ mais trés para as mesmas condi¢Ses de éngulo de
ataque para asa com winglets. Como a rotagdo da asa para estabelecimento do angulo
de ataque foi pequena, o niimero de elementos das malhas foi praticamente 0 mesmo:

560000 elementos tetraédricos.

Todas as malhas possuem um refinamento préximo a asa, onde o espagamento
na regido ao longe da asa é de 2.5 m, 0.03 m (3 cm) na superticie da asa e 0.008 m (8

mm) na ponta da asa e nos winglets.

As malhas geradas para realizagdo das simulagdes serdo mostradas a seguir.
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Mow 26, 2003

FLUENT 8.1 (3d, essgregated)

Girid

Figura 6.7: Malha para asa sem winglet.

MNov 26, 2003

FLUENT 5.1 {5d, ssgregated)

Grid

Figura 6.8: Malha para asa com winglet.
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L

Grd Mow 28, 2003
FLUENT 8.1 {3d, asgregated}
Figura 6.9: Detalhe da malha na regido proxima 2 asa sem winglet.
Grid Nov 26, 2003

FLLIENT&.1 {3d, segmgated

Figura 6.10: Detathe da malha na regido proxima 4 asa com winglet.
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Girid

lov 26, 2003
FLUENT&.1 i3, sagmgad-ad)

Figura 6.11: Malha sem utilizag3o da simetria do problema para asa sem winglet.

Girld

26, 2003
FLUENT&.1 {ad., sagmgamdj

Figura 6.12: Malha sem utilizagfio da simetria do problema para asa com winglet.
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Ly

Girid Wow 26, 2003
FLUENTE&.1 {3d, 2egregaied)

Figura 6.13: Detalhe da malha ao redor do perfil de raiz das asas.
Grid MNow 28, 2003

FLUENT 8.1 {3d, ssgmgated )

Figura 6.14: Detalhe da matha da superficie do winglet.
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7. Simulacdes Numéricas

As simulagdes realizadas podem ser divididas em duas categorias, simulagdes
utilizando o Modelo de Escoamento Inviscido (Equagio de Euler) e simulagdes
utilizando o Modelo de Escoamento Viscoso de Fluido Newtoniano (Equagdo de

Navier-Stokes) com modelo de turbuléncia de Spalart-Allmaras.

Em todas as categorias foram levantadas curvas de arrasto, arrasto induzido e
sustentagio em funcéio do angulo de ataque ¢ também as polares de arrasto. Foram
colocadas juntas as curvas da asa sem winglets ¢ da asa com winglest, no mesmo
grifico, de forma a se comparar as performances das duas configuragdes ¢ avaliar o

nivel de influéncia desses apéndices nos coeficientes acrodinidmicos da asa.

Nas simulagdes da segunda categoria (Navier-Stokes) foram inclufdos as
curvas de arrasto viscoso e razio de aspecto equivalente devido a presenga dos

winglets em fungdo do dngulo de ataque.

O critério de convergéncia utilizado em todos os casos, salvo indicagdo
contréria, foi do valor residual ser mais baixo do que 0,001 para continuidade ¢ para
as trés diregbes de velocidade e, no caso de escoamento turbulenio, para a
viscosidade cinemadtica turbulenta. A convergéncia ocorreu apds 180 iteragbes, em

média, para todas as categorias de simulagdes.

7.1. Simulacdes Utilizando a Equacio de Euler
As condigdes, métodos, modelos ¢ hipoteses das simulagdes foram:
= Escoamento tridimensional (3D).
- Regime Permanente.
> Fluido ideal (incompressivel € ndo-viscoso): ar.
= Escoamento sem troca de calor.

> Método dos Volumes Finitos para discretizagso das equagdes diferenciais
parciais que regem o escoamento, utilizando a fungdo de interpolagéio UpWind

de 2* ordem.
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- Algoritimo SIMPLE para tratamento do acoplamento Presséo-Velocidade.
> Método Segregado de solugdo, resolvendo os sistemas lineares um a um.

> Pressiio atmosférica nula, assim, o campo de pressdes ¢ calculado em

pressfo efetiva, ndo total.
- Escoamento incidente com U, = 70 m/s.

- Massa especifica do ar constante e p = 1.225 kg/m®.

7.1.1. Angulo de ataque a = 0°
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Figura 7.1: Distribui¢ao de velocidade.

Um comentério importante é que no caso de escoamento de fluido ideal, o
principio da aderéncia completa, onde o fluido possui a mesma velocidade do sélido
na regiio de contato entre os dois, ndo ¢ vélido. Isto se deve ao fato de que a
viscosidade do fluido é zero, portanto, o fluido pode deslizar sobre a superficie solida

sem atrito.
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Figura 7.2: Distribui¢io de w (componente z do campo de velocidade) sobre a asa sem winglet.
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Figura 7.3: Distribuigdo de w (componente z do campo de velocidade) sobre a asa com winglet.

A componente w (Figuras 7.5 e 7.6)(diregdo z) € importante pois a direcsio z €
a direcdio da envergadura, ou seja, a componente w ¢ a responsavel pelos efeitos
tridimensionais, como efeito downwash e arrasto induzido. Pode-se perceber que a
pesar do pico de magnitude das velocidades serem praticamente iguais, eles ocorrem

em uma regiio maior na asa do que na asa com winglets.
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7.1.2. Angulo de ataque a =4°
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Figura 7.4: Contornos velocidade.
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Figura 7.5: Vértices de ponta de asa (wing #ip vorfex) para asa sem winglets.
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Figura 7.6: Vértices de ponta de asa (wing tip vortex) para asa com winglets.

Analisando as Figuras 7.5 e 7.6, comparando os vetores velocidade para os
casos, pode-se perceber a redugiio da vorticidade quando o winglet € colocado na
ponta da asa. Nota-se que a circulagdio na ponta da asa sem winglet é maior do que a
ocorrente na asa com o apéndice, pois a regifio onde ocorre essa rotagio no campo de
velocidade é maior, a pesar das magnitudes dos vetores velocidade no vértice serem

praticamente as mesmas.
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7.1.3. Angulo de ataque a = 8°
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Figura 7.7: Contornos de velocidade.
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Figura 7.8: Vértices de ponta de asa (wing tip vortex) para asa sem winglets.
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Figura 7.9: Vértices de ponta de asa (wing fip vortex) para asa com winglets.

7.1.4. Coeficientes Aerodinimicos

O software Fluent 6.1 possui uma ferramenta de célculo dos coeficientes de
arrasto e sustentagio. Essa ferramenta, integra a distribuigio de pressdo, calculada
através da solugiio da equagdo de movimento, na superficic da asa, calculando as
forcas de arrasto e sustentagio. Os coeficientes aerodindmicos sio calculados através

na normaliza¢fio destas forgas.

D
Cp == 7.1
2 r2p0,28 -1
B
C; =————— 7.2
LU 2s (7.2)

A seguir serdo apresentados as curvas de arrasto € sustentagio, comparando o

desempenho de ambas configuragdes de asa.
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Figura 7.10: Curva de arrasto por 4ngulo de ataque.
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Figura 7.11; Curva de sustentacio por &ngulo de ataque.
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Coeficiente de arrasto induzido x dngulo de ataque

0.03

0.025 +

0.02 —

Coi sw - Gl ow

g

0.00015 4

0.0001

1

Diferenga

111

—e—Sem Wingiets
—u—Com Winglets

0.01

0.005

4
alfa ()

Figura 7.12: Curva de arrasto induzido por dngulo de ataque.

Razio de aspecto equivalente para asa com winglets
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Figura 7.13: Curva da raziio de aspecto equivalente por dngulo de ataque.
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Polares de Arrasto
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Figura 7.14: Polar de arrasto (Cp x CL)k

Pela Figura 7.10 nota-se a redugfo no arrasto quando a asa possui winglets.
Nota-se também que a maior reduc3o no arrasto se éncontra para baixos valores de
angulo de ataque, condigdo de cruzeiro. Para aeronaves comerciais isto ¢ muito
importante devido & economia de combustivel, uma vez que na maior parte de sua
trajetéria as aeronaves comerciais se encontram em condigdo de cruzeiro. Para 0° de
angulo de ataque a redugdo percentual do arrasto foi de 19.5%, para 4° foide 8.5% e

8.8% para 8°.

Ja o coeficiente de sustentagio mostrou uma certa invaridncia com relagdo &
presenca dos winglets, permanecendo praticamente constante. Houve uma certa
redugio na sustentagio, mas com redugio percentual maxima de 0.85%. Esta suposta
invaridncia se deve a simetria do perfil dos winglets, pois se este possuisse um certo

arqueamento (assimetria) a sustentagdo aumentaria.

O arrasto induzido assim como o arrasto total foi diminuido com a presenga
dos winglets, mas ao contrério do arrasto total a maior redugdo ocorreu para altos

valores de 4ngulo de ataque (8°).
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A razio de aspecto equivalente é calculada usando a hipétese de que a redugio
do arrasto induzido & proporcionada por um aumento da razdo de aspecto devido a
presenga dos wingleis na asa, considerando o coeficiente de sustentagio constante.

Para o calculo da razdo de aspecto equivalente ¢ utilizada a Equag@o 3.36.

7.2. Simulacdes Utilizando a Equacio de Navier-Stokes.
As condicbes, métodos, modelos e hip6teses das simulagdes foram:
- Escoamento tridimensional (3D).
-~ Regime Permanente.
> Fluido Newtoniano (incompressivel viscoso): ar.
> Escoamento sem troca de calor.
> Escoamento turbulento com modelo de turbuléncia de Spalart-Allmaras.

S Método dos Volumes Finitos para discretizagdo das equagbes diferenciais
parciais que regem o escoamento, utilizando a fungfio de interpolagio UpWind

de 2% ordem.
- Algoritimo SIMPLE para tratamento do acoplamento Pressdo-Velocidade.
> Método Segregado de solugdo, resolvendo os sistemas lineares um a um.

> Pressio atmosférica nula, assim, o campo de presses € calculado em

pressdo efetiva, ndo total.

S Escoamento incidente com U, = 70 m/s.

- Massa especifica do ar constante € p = 1.225 kg/m>.

> Viscosidade dindmica constante e p = 1.7894x10”.

- Numero de Reynolds do escoamento: Re = 9.5x10°.

- Namero de Mach do escoamento: M =0.2 (incompressivel).

As figuras a seguir mostram as solugdes das equagdes de movimento do

escoamento, distribuigdes de pressdo € velocidade.
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72.1. Angulo de ataque a = 0°
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Figura 7.15: Distribuigdio de velocidade.
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Figura 7.16: Magnitude de vorticidade para asa sem winglets.
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Figura 7.17: Magnitude de vorticidade para asa com winglets.
Pode-se notar a diferenga entre os contornos de velocidade das simulagdes com
Equagio de Navier-Stokes (Figura 7.15) para as simulaces com Equagfio de Euler,

uma vez qgue a velocidade na superficie da asa na Figura 7.15 é nula.

Outro aspecto importante € que a regido de picos de vorticidade (Figuras 7.16 ¢
7.17) é maior para asa sem winglets, isto significa que a circulagdo na ponta da asa

sem winglet & maior e por sua vez o efeito dawnwash também & maior.
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122 Angulo de ataque o= 4°
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Figura 7.18: Contornos de velocidade.
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Figura 7.19: Magnitude de vorticidade para asa sem winglets.
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Figura 7.20: Magnitude de vorticidade para asa com winglets.
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Figura 7.21: Vértices de ponta de asa (wing tip vortfex) para asa sem winglets.
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Figura 7.22: Vértices de ponta de asa (wing tip vortex) para asa com winglets.

A regifio de picos de vortices, como era esperado, continua maior para asa sem

winglets (Figuras 7.19 e 7.20), mas pode-se perceber que quanto maior for o angulo

de ataque maior sera as intensidades dos picos de vorticidade.

Os vetores de velocidade mostram a redugdo da vorticidade na ponta da asa

quando introduzidos os winglets.
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7.2.3. Angulo de ataque o= 8°

27, 2003
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Figura 7.23: Contornos de velocidade.
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Figura 7.24: Magnitude de vorticidade para asa sem winglets.
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Figura 7.25: Magnitude de vorticidade para asa com winglets.

1.20e402
' 1.140402
1.08e2+02
1.02e+02
9.63e+01
8.045401
8.45e+01

7.86e+01
7.268+01

3.71e401
311e+01

252e+01
1.93e401

1.34e+01
: +00
7.42e l 7

1.508+00

Velocity Vectors Colored By Velocity Magnituda (m/s) Nov 27, 2003
FLUENT 8.1 (3d, segregated, S-A)

Figura 7.26: Vértices de ponta de asa (wing fip voriex) para asa sem winglets.
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Figura 7.27: Vértices de ponta de asa (wing tip vortex) para asa com winglets.

Os vetores de velocidade mostram a redugdio da vorticidade na ponta da asa
quando introduzidos os winglets. Com a presenca dos winglets a vorticidade fica
restrita a uma pequena regido na ponta dos mesmos, dificultando a circulagdo da

parte de baixo para parte de cima da asa.

7.2.4. Coeficientes Aerodinimicos

Conforme explicado na se¢fo 7.1.4, o Fluent 6.1 ja possui a ferramenta de
céleulo dos coeficientes aerodinimicos através da metodologia ja explicada. Nas
simulagdes com a Equagio de Navier-Stokes o coeficiente de arrasto ¢ a soma de
duas parcelas: o arrasto viscoso e o arrasto de pressdo, onde ja estd incluido o arrasto
induzido. Isto por causa da presenga da viscosidade do fluido que na regido de parede

cria uma tensdo de cisalhamento entre s6lido e fluido gerando o arrasto viscoso.

A seguir serdo apresentados as curvas de arrasto e sustentagfo, comparando o

desempenho de ambas configurag@es de asa.
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Coeficiente de arrasto de pressao x dngulo de ataque
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Figura 7.28: Curva de arrasto de pressdo por dngulo de ataque.
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Figura 7.29: Curva de arrasto viscoso por angulo de ataque.
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Figura 7.30: Curva de arrasto total por angulo de ataque.
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Figura 7.31: Curva de sustentagio por dngulo de atague.
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Coeficiente de arrasto induzido x &nguio de atague
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Figura 7.32: Curva de arrasto induzido por &ngulo de ataque.

Pode-se notar que as curvas de arrasto de pressdo (Figura 7.28) e arrasto total
para eq. de Euler (Figura 7.10) sdo muito semelhantes isso porque a principal
diferenga entre os modelos de escoamento ¢ a presenga ou néo das forgas viscosas.
Por isso, s¢ compararmos os coeficientes de arrasto de pressdo nos dois casos (que €

o proprio arrasto total no caso inviscido) espera-se que sejam muito parecidos.

A grande preocupagio com as simulagbes de escoamento viscoso era
justamente a presenga do arrasto viscoso. Isso porque com a introdugdo dos winglets,
a 4rea de contato entre asa e ar aumenta, assim o arrasto viscoso também aumenta e
esse aumento poderia ser grande o suficiente para aumentar o arrasto total com a
presenca dos winglets, o que contradiz a realidade, onde o arrasto diminui. Mas os

resultados obtidos estdo de acordo com a realidade (Figuras 7.29 ¢ 7.30).

A sustentacio apresentou o mesmo comportamento das simulagGes com a eq.

de Fuler: praticamente invariante & presenga dos winglets.

O arrasto total obteve redugo de 7% para 0° de dngulo de ataque, 3% para4° e
2% para 8°.
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Razio de aspecto equivalente para asa com winglets
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Figura 7.33: Curva da raziio de aspecio equivalente por dngulo de ataque.
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Figura 7.32: Polar de arrasto (Cpx Cy).
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8. Equipamentos Utilizados

Foram utilizados os seguintes equipamentos do Laboratério de Dindmica dos
Fluidos Computacional da EPUSP, sob a coordenagdo do Prof. Dr. Jalio Romano
Meneghini, para a execugdo dos programas Gambit 2.0.4 e Fluent 6.0 da Fluent.Inc,

do sistema operacional Unix:

SPARCstation 4, da SUN Microsystems, com sistema operacional UNIX

System V Release 4.0 e ambiente grafico Solaris 3.4 (SunOS 5.4);

- SPARCstation 5, da SUN Microsystems, com sistema operacional UNIX
System V Release 4.0 e ambiente grafico Solaris 3.4 (SunOS 5.4);

- SPARCstation 20, da SUN Microsystems, com sistema operacional UNIX
System V Release 4.0 e ambiente gréfico Solaris 3.4 (SunOS 5.4).

- Estagdes de trabalho Digital Alpha DS20.

Um microcomputador PC-Pentium foi utilizado para o uso de planithas eletronicas ¢
editores de textos. A impressora HP Office Jet foi utilizada para imprimir os

resultados e os relatdrios.
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9. Conclusdes Finais e Sugestdes para Trabalhos Futuros

Os estudos tedricos tiveram importdncia fundamental. Sem eles, seria
impossivel analisar de forma correta e coerente os resultados obtidos. Alias,
constatou-se a necessidade de estudos mais abrangentes a fim de prosseguir com o

desenvolvimento do tema.

Pode-se perceber que, a pesar da CFD ndo obter resultados quantitativos muito
confidveis, qualitativamente mostrou-se eficiente neste trabalho, obtendo resultados

comparativos bem precisos e de acordo o esperado.

Uma deficiéncia do trabalho foi a utilizagdo de um perfil simétrico para criagéo
da geometria da asa e dos winglets. Essa simetria do perfil, foi a causa mais provavel
da invaridncia da sustentagio em relagdo & presenga dos apéndices. A escolha do
perfil simétrico ocorren exclusivamente devido a melhor adapiagio desta geometria 3

geragdo das malhas computacionais.

Pelos resultados das simulages utilizando a Equacgiio de Euler nota-se a
redugdo no arrasto quando a asa possui winglets. Nota-se também que a maior
redugdio no arrasto se encontra para baixos valores de angulo de ataque, condigdo de
cruzeiro. Para aeronaves comerciais isto ¢ muito importante devido 4 economia de
combustivel, uma vez que na maior parte de sua trajetoria as acronaves comerciais se
encontram em condigio de cruzeiro. Para 0° de dngulo de ataque a redugdo
percentual do arrasto foi de 19.5%, para 4° foi de 8.5% ¢ 8.8% para 8°. O arrasto
induzido assim como o arrasto total foi diminuido com a presenca dos winglets, mas
a0 contririo do arrasto total a maior redugdo ocorreu para altos valores de dngulo de

ataque (8°).

Conforme o esperado, a redugio do arrasto total devido 4 presenga dos winglets
para as simulagGes utilizando a Equagdo de Navier-Stokes com modelo de Spalart-
Alimaras para turbuléncia foi menor em relagio as simulagdes com modelo
inviscido. Isto devido a presenga e ao aumento do arrasto viscoso por causa da
inclusio dos winglets. O arrasto total obteve redugio de 7% para 0° de angulo de

ataque, 3% para 4° e 2% para 8°.
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Pode-se notar que as curvas de arrasto de pressdo (Figura 7.28) e arrasto total
para eq. de Euler (Figura 7.10) sdo muito semelhantes isso porque a principal
diferenca entre os modelos de escoamento € a presenga ou niio das forgas viscosas.
Por isso, se compararmos os coeficientes de arrasto de pressdo nos dois casos (que ¢

o proprio arrasto total no caso inviscido) esperava-se que fossem muito parecidos.

Analisando as curvas de razio de aspecto equivalente por dngulo de ataque,
nota-se que a eficiéncia dos winglets € muito maior para baixos 4ngulos de ataque,
isto por causa da pequena inclinagdo dos winglets (proprio 4ngulo de ataque)

formando uma barreira mais eficiente contra a circulagdo.

As sugestdes para trabalhos futuros sio, primeiramente utilizar um perfil
assimétrico tanto para a asa como para os winglels, para poder avaliar a influéncia
dos winglets na sustentagdo de forma mais adequada. Outra ¢ realizar simulagGes de
escoamenio compressivel, pois a maioria das aeronaves que utilizam esses tipos de

apéndices nas superficies de sustentagio voam a velocidades superiores a Mach 0.3.
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